No. of printed pages: 5

INDIAN SCHOOL SOHAR PERIODIC TEST III (2023-24)

MATHEMATICS (041)

SET 1 MAX.MARKS: 80

DATE: 02/12/23

CLASS: X

General Instructions:

This Question Paper has 5 Sections A, B, C, D and E.

Section A has 20 MCQs carrying 1 mark each

Section B has 5 questions carrying 02 marks each.

Section C has 6 questions carrying 03 marks each.

Section D has 4 questions carrying 05 marks each.

Section E has 3 case based integrated units of assessment (04 marks each) with sub- parts of thevalues of 1, 1 and 2 marks each respectively.

All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E.

Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

	Section A							
	Section A consists of 20 questions of 1 mark each.							
1.	If a and b are two consecutive natural numbers then the HCF (a, b) is(a) 1(b) 0(c) ab(d) a+b	1						
2.	If the product of the zeroes of $x^2 - 3kx + 2k^2 - 1$ is 7, then the values of k are(a) -3 and 3(b) -2 and 3(c) -2 and 2(d) -3 and 2	1						
3.	Given below is a pair of linear equations. mx + 4y - 6 = 0; $ny - 12x + 12 = 0$ For which of the following values of m and n do the above equations have infinitely many solutions? (a) $m = -1$ and $n = 2$ b) $m = -1$ and $n = 3$ c) $m = 6$ and $n = -8$ d) $m = 6$ and $n = -2$							
4.	The nature of roots of the quadratic equation $9x^2 - 6x - 2 = 0$ is: (a) No real roots (b) 2 equal real roots (c) 2 distinct real roots (d) More than 2 real roots							
5.	In the figure shown below, lines AB and PQ are parallel to each other. All measurements are in centimeters. Which of the following gives the value of $\cos\theta$?	1						
	(a) $\frac{b}{c}$ (b) $\frac{c}{b}$ (c) $\frac{c}{b+y}$ (d) $\frac{a+x}{b+y}$							
6.	If the sum of first n terms of an AP is $5n^2 + 2n$, then its second term is:							
-	(a) 17 (b) 16 (c) 27 (d) 56	1						
7.	The point which lies on the perpendicular bisector of the line segment joining the points $A(-2, -5)$ and $B(2, 5)$ is							
	(a) (-2, 0) (b) (0, 2) (c) (2, 0) (d) (0, 0)							

TIME: 3 HOURS

The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is	1						
(a) 5 (b) 12 (c) 11 (d) 7 + √5							
What is the probability of getting the sum as a prime number if two dice are thrown?							
	1						
cm, then find the length of SP is							
(a) 15 cm (b) 14 cm (c) 12 cm (d) 11 cm							
Find the value of $(1 + \tan \theta + \sec \theta)$ $(1 + \cot \theta - \csc \theta)$.	1						
(a) 0 (b) 1 (c) 2 (d) -1							
The value of 2Sin ² 30° – 3Cos ² 45° + tan ² 60° + 3Sin ² 90° is	1						
(a) 1 (b) 5 (c) 0 (d) None of the these							
If sin x + cosec x= 2, the value of $sin^{19} x$ + cosec ²⁰ x is	1						
(a) 2^{19} (b) 2 (c) 2^{20} (d) 2^{39}							
If the perimeter of a circle is equal to that of a square, then the ratio of their areas is	1						
	-						
	1						
· · · · · · · · · · · · · · · · · · ·							
	1						
(a) 210° (b) 90° (c) 60° (d) 45°							
A card is drawn from a deck of 52 cards. The event E is that card is not an ace of hearts. The							
number of outcomes favourable to E is							
(a)4 (b) 13 (c)48 (d) 51							
The empirical relationship between the three measures of central tendency is	1						
	ne						
	()						
	on (A)						
	1						
Reason (R): Common difference of the AP given by $d = a_{n+1} - a_n$.							
Assertion(A):D and E are points on the sides AB and AC respectively of a Δ ABC such that	1						
AB = 10.8 cm, AD = 6.3 cm, AC = 9.6 cm and EC = 4 cm then DE is parallel to BC.							
Reason (R): If a line is parallel to one side of a triangle then it divides the other two sides							
in the same ratio.							
in the same ratio. Section B							
in the same ratio.	2						
	What is the probability of getting the sum as a prime number if two dice are thrown? (a) $\frac{5}{24}$ (b) $\frac{5}{12}$ (c) $\frac{5}{20}$ (d) $\frac{1}{4}$ A quadrilateral PQRS is drawn to circumscribe a circle. If PQ = 12 cm, QR = 15 cm and RS = 14 cm, then find the length of SP is (a) 15 cm (b) 14 cm (c) 12 cm (d) 11 cm Find the value of (1 + tan θ + sec θ) (1 + cot θ - cosec θ). (a) 0 (b) 1 (c) 2 (d) -1 The value of 2Sin ² 30° - 3Cos ² 45° + tan ² 60° + 3Sin ² 90° is (a) 1 (b) 5 (c) 0 (d) None of the these If sin x + cosec x = 2, the value of sin ¹⁹ x + cosec ²⁰ x is (a) 2 ¹⁹ (b) 2 (c) 2 ²⁰ (d) 2 ³⁹ If the perimeter of a circle is equal to that of a square, then the ratio of their areas is (a) 22 : 7 (b) 11 : 14 (c) 7 : 22 (d) 14 : 11 If a quadrant is cut off from the circle of circumference 44 cm, then area of the remaining portion is (a) 120° (b) 115.5 cm ² (c) 125.5 cm ² (d) none of these The angle through which the minute hand of the clock moves from 8am to 8 : 35am is (a) 210° (b) 90° (c) 60° (d) 45° A card is drawn from a deck of 52 cards. The event E is that card is not an ace of hearts. The number of outcomes favourable to E is (a) 4 (b) 13 (c)48 (d) 51 The empirical relationship between the three measures of central tendency is (a) 3 Median= Mode + 2 Mean (d) 3 Median= Mode - 3 Mean (c) 3 Median= 2 Mode + Mean (d) 3 Median= Mode - 2 Mean stions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two ements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the extenswer to these questions from the codes (a), (b), (c) and (d) as given below. sth Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion th Assertion (A) is false, but Reason (R) is false. ssertion (A) is true, but Reason (R) is true Assertion (A) is true, but Reason (R) is false. ssertion (A) is false, but Reason (R) is true Assertion (A): The nth term of an AP is 7-4n then its common differen						

		2						
	Show that $\frac{OA}{OB} = \frac{OC}{OD}$.							
23.	In the figure, a circle touches the side BC of triangle ABC at P and touches AB and AC produced	2						
		-						
	at Q and R respectively. Show that AQ = $\frac{1}{2}$ (Perimeter of $\triangle ABC$).							
	Â							
	B P C							
	9 R							
24.	If sin(A + B) = 1 and sin (A – B)= $\frac{1}{2}$; 0° < A + B < 90°; A > B, find A and B.	2						
	2 OB	2						
	Find the value of x if $2 \csc^2 30^\circ + x \sin^2 60^\circ - \frac{3}{4} \tan^2 30^\circ = 10$.							
25.	To warn ships for underwater rocks, a lighthouse spreads a red colored light over a sector of	2						
	angle 80° to a distance of 16.5 km. Find the area of the sea over which the ships are warned. (Use π = 3.14)							
	OR							
	A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of							
	the corresponding: (i) minor segment (ii) major sector.							
	Section C							
	Section C consists of 6 questions of 3 marks each.	-						
	Obtain zeroes of $4\sqrt{3}x^2 + 5x - 2\sqrt{3}$ and verify relation between its zeroes and coefficients.	3						
27.	A dining hall has a length of 8.25 m, breadth of 6.75 m, and height of 4.50 m. What is the length of the longest unmarked ruler that can exactly measure the three dimensions of the hall?	3						
		-						
28.	Solve for x and y:	3						
	152x - 378y = -74;-378x + 152y = -604							
	OR							
	From a shop Sudhir bought 2 books of Mathematics and 3 books of Physics of class X for							
	₹850 and Suman bought 3 books of Mathematics and 2 books of Physics of class X for							
	₹900. Considering the price of one Mathematics book and that of one Physics book be ₹x							
20	and ₹y respectively, find the value of x+y.	2						
29.	Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that \angle PTQ = 2 \angle OPQ.	3						
	OR							
	Prove that the parallelogram circumscribing a circle is a rhombus.							
30.	If $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$, show that $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$.	З						
31.	If the median of the distribution given below is 28.5, find the values of x and y.	3						

	Class	0-10	10-20	20-30	30-40	40-50	50-60	Total]	
		5		20-30	15		5	60	-	
	Frequency	5	x			У	5	00		
		Section	Diconsi		ion D	of 5 mark	soach			
	1			-						T
32.	Two water taps together can fill a tank in 9 $\frac{3}{8}$ hours. The tap of larger diameter takes 10									5
	hours less than the can separately fill th		e to fill t	he tank s	eparately	y. Find the	time in wl	nich each t	tap	
					DR					
	Solve for x: $\frac{1}{(a+b+a)}$	$\frac{1}{x} = \frac{1}{a} + \frac{1}{b}$	$+\frac{1}{x}$,[3	a ≠ 0, b	\neq 0, x	≠ 0 , x ≠	-(a + b)]		
33.	Prove Basic Proport and DE BC. If AD =	•				•		AC respect	tively	5
34.	There are two ident	ical solid c	ubical bo	oxes of si	de 7cm. F	rom the t	op face of	the first		5
	cube a hemisphere		•				•			
	hemisphere is inver	•		-			s surface to	o form a		
	dome. Find (i) the to					ds formed				
	(II) VOlui	me of each	i new sol		d. DR					
	A double cone is for	med by a	revolving			ving sides ^r	5 cm 12 cr	n and 13 c	m	
	about its hypotenus		-		-	-				
35.	The following frequ								of	5
	a locality. Find mea	n and mod	e of the	data.		· · · ·				
	Mo	onthly con	sumptio	on of	1	Number o	f			
		electricit	ty (in un	its)		consum	ers			
		6	5-85			4				
		8	5-105			5				
		10	5-125			13				
		12	5-145			20				
		14	5-165			14				
		16	5-185			8				
		18	5-205			4				
				Secti	on E					-
	tion E has 3 case bas	-	ted unit	s of asse	ssment v	vith sub- p	arts of the	e values o	f 1, 1 and	2
	rks each respectively	/.								1
36	Case Study – 1			ationa duu					. ~	
	India is competitive manufacturing location due to the low cost of manpower and strong								-	
technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produ										
	16000 sets in 6th ye		•			a intea int		, , can le	produced	
	Based on the above information answer the following questions:									
	(i) What is the production during first year?								1	
	(ii)What is the fixed			•		reases eve	ry year?			1
	()								2	
	OR							2		
	(iii)In which year will the production reach 29200? 2						2			

37	Case Study – 2					
57	In the giant wheel shown below, Gagan is sitting in one of cabins which is 12m high from the platform. Jyoti and Karan are sitting in the lowest and the highest cabins from the platform respectively. From Gagan the angle of depression of Jyoti and the angle of elevation of Karan is 30° and 60° respectively.					
	Gagan's cabin Platform Ground					
	(Note: The figure is not to scale.)					
	Based on the above, answer the following questions:					
	(i)What is the angle of elevation of Gagan from Jyoti?	1				
	(ii) If α = angle of elevation of Gagan from Jyoti and β = angle of depression of Gagan from Karan, then find the value of sin α + cos β .	1				
	(iii)Find the diameter of the giant wheel.					
	OR	2				
	(iii)Find the distance between Gagan's cabin and Karan's cabin.					
		2				
38	Case Study – 3 In a hall, people are seated at a distance of 1m from each other. Three people sit at points P, Q and R whose coordinates are (6, -2) ,(9,4) and (10,6) respectively.					
	(i)What is the distance between P and R?					
	(ii)Find the midpoint of the line segment joining P and R?	1				
	(iii)Find the ratio in which Q divides the line segment joining P and R.					
	OR					
	(iii)If a point S, lying on the straight-line joining Q and R such that it divides the distance					
	between them in the ratio of 1:2, then find the coordinates of S.	2				

*****THE END*****