

INDIAN SCHOOL SOHAR PRE-BOARD I EXAMINATION (2023-24) SUBJECT: PHYSICS THEORY (042)

Maximum Marks: 70 Time Allowed: 3 hours

CLASS: XII DATE: 20/11/2023

GENERAL INSTRUSTIONS:

- 1. There are 33 questions in all. All questions are compulsory
- 2. This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
- 3. Section A contains sixteen MCQ of one mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study-based questions of four marks each and Section E contains three long answer questions of five marks each.
- 4. There is no overall choice. However, an internal choice has been provided in section B, C, D and E. You have to attempt only one of the choices in such questions.
- 5. Use of calculators is not allowed.
- 6. You may use the following values of physical constants wherever necessary.

 $c = 3 \times 10^{8} \text{ m/s} \qquad h = 6.6 \times 10^{-34} \text{ J s} \qquad e = 1.6 \times 10^{-19} \text{ C}$ $\mu_{0} = 4\pi \times 10^{-7} \text{ Tm A}^{-1} \qquad \epsilon_{0} = 8.854 \times 10^{-12} \text{ C}^{2} \text{ N}^{-1} \text{ m}^{-2}$ $\frac{1}{4\pi\epsilon_{0}} = 9 \times 10^{9} Nm^{2}C^{-2}$ Mass of electron = 9.1×10⁻³¹ kg Mass of neutron = 1.675×10⁻²⁷ kg Mass of proton = 1.673 × 10⁻²⁷ kg Avogadro's number = 6.023×10²³ per gram mole Boltzmann constant = 1.38 × 10⁻²³ JK⁻¹

0.4. 1					1.	
Qn's. No						Marks
	Section - A					
	All questions are	e compulsory. In ca	se of internal choices,	attempt any one of them.		
1	The magnitude	of the electric fie	ld due to a point cha	rge object at a distance 4.0	m is 9 N/C.	
	From the same charged object, the electric field of magnitude, 16 N/C will be at a distance of				1	
						T
	(a)1 m	(b) 2 m	(c) 3 m	(d) 6 m		
2	Rank the electr	ostatic potential	energies for the give	n system of charges in incre	asing order.	
		ľ	0 0	, .	U	
		0 -0	-0 -0 -0	-30 0 -30		
		<u>ĕ</u> r ∈	$\Theta^{r}\Theta^{r}\Theta^{r}\Theta^{r}$	-2q q $2r$ $-2q$		
		• •	0 0 0	č		1
		(a)	(b) (c) (d)		
	(a) 1 = 4 < 2 < 3	5		(b) 2 = 4 < 3 < 1		
	(c) 2 = 3 < 1 < 4			(d) 3 < 1 < 2 < 4		
3	Apply Kirchhoff	's law to find the	current I in the part of	of the following circuit.		
			/	_		
		¥₂	A 7/1	A3A		
					1	
		\sim_{4}	1 2A			
	(a) 5 A	(b) 3 A	(c) 7 A	(d) 1 A		
4	When a charge of 1C moving with velocity 1 m/s normal to a magnetic field experiences a					
	force 1 N, then the magnitude of the magnetic field is			4		
	(a) = 4 Crossing and (b) = 4 Trade and (c) = 4 Crossing				1	
	(a) 1 Gauss	(b) 1 Tesla	a (c) 1 Oreste	ed (d) 1 Telsa/S		

5	To convert a galvanometer to ammeter a shunt S is to be connected with the galvanometer. The effective resistance of the ammeter then is		
	(a) GS/(G+S) (b) (G+S)/GS (c) G+S (d) All of the above	_ _	
6	The relative permeability of a substance X is slightly less than unity and that of substance Y is		
	slightly more than unity then –		
	(a) x is paramagnetic and y is ferromagnetic (b) x is diamagnetic and y is ferromagnetic	1	
	(c) x and y both are paramagnetic (d) x is diamagnetic and y is paramagnetic.		
7	An inductor 20 mH, a capacitor 50 μ F and a resistor 40 Ω are connected in series across a		
	source of emf V = 10 sin 340 t. The power loss in AC circuit is	1	
	(a) 0.76 W (b) 0.89 W (c) 0.51 W (d) 0.67 W		
8	Which of the following graphs represent the variation of current(I) with frequency (f) in an AC circuit		
	containing a pure capacitor?		
		1	
	(i) (ii) (iii) (iv)		
	(a) ii (b) iii (c) iv (d) i		
9	With increase in frequency of an A.C. supply, the impedance of a series L-C-R circuit		
	(a) remains constant. (b) increases. (c) decreases.	1	
	(d) decreases at first, becomes minimum and then increases.		
10	The self-inductance L of a solenoid of length / and area of cross-section A, with a fixed number		
	of turns N increases as	1	
	(a) / and A increase (b) / decreases and A increases		
	(c) / increases and A decreases (d) both / and A decrease.		
11	The radius of curvature of the curved surface of a plano-convex lens is 20 cm. If the refractive		
	index of the material of the lens be 1.5, it will		
	(a) act as a convex lens only for the objects that lie on its curved side.	1	
	(b) act as a concave lens for the objects that lie on its curved side.		
	(d) act as a concave lens irrespective of side on which the object lies		
12	In Figure assuming the diodes to be ideal		
12			
	A R D		
	-10V • • • • • • • • • • • • • • • • • • •		
		1	
	\square D ₂		
	В		
	(a) D1 is forward biased and D2 is reverse biased and hence current flows from A to B		
	(b) D2 is forward biased and D1 is reverse biased and hence no current flows from B to A and		
	vice versa.		
	(c) D1 and D2 are both forward biased and hence current flows from A to B.		
	(d) D1 and D2 are both reverse biased and hence no current flows from A to B and vice versa.		
	(d) Dif and D2 are both reverse blased and hence no current flows from A to B and vice versa.		

	For Questions 13 to 16, two statements are given –one labelled Assertion (A) and other		
	labelled Reason (R) . Select the correct answer to these questions from the options as given		
	below.		
	A. Assertion and Reason are true and Reason is the correct explanation of Assertion.		
	B. Assertion and Reason are true but Reason is NOT the correct explanation of Assertion.		
	C. Assertion is true but Reason is false.		
12	D. Both Assertion and Reason are faise.	1	
13	spherical. Reason (R): Isotropic medium has same refractive index in all directions.	L L	
14	Assertion (A): Silicon is preferred over Germanium for making semiconductor devices.		
	Reason (R): The energy gap of Germanium is more than the energy gap of Silicon.	1	
15	Assertion (A): The focal length of a concave mirror is f and an object is placed at a distance x		
	from the focus. The magnification produced by the mirror is f/x .		
	Reason (R): magnification = size of object / size of image		
16	Assertion (A): The direction of the electric field is always perpendicular to the equipotential		
	surface. Reason (R): Work is done by the electric force in moving a charge between any two	1	
	points on an equipotential surface is zero.	_	
	Section – B		
	All questions are compulsory. In case of internal choices, attempt any one.		
17	Name the device which utilizes unilateral action of a p-n diode to convert ac into dc. Draw the		
	circuit diagram of a full wave rectifier. Explain its working showing its inputs and output wave	2	
	forms.		
18	The energy levels of a hypothetical atom are given below. Which of the shown transitions will		
	result in the emission of photon of wavelength 275 nm?		
	<u>A B</u> 0		
	-2 eV	2	
	-4.5 eV	2	
	– 10 eV		
19	Explain the processes of nuclear fission and nuclear fusion by using the plot of binding energy	2	
	per nucleon (BE/A) versus the mass number A.		
20	A wire of length Lo has a resistance Ro. It is gradually stretched till its length becomes 2Lo.		
	(a) Plot a graph showing variation of its resistance R with its length L during stretching.	2	
	(b) What will be its resistance when its length becomes 2Lo?		
21	Calculate the radius of curvature of a equi-concave lens of refractive index 1.5, when it is kept		
	in a medium of refractive index 1.4, to have a power of –5 D?		
	OR	2	
	A ray of light passes through an equilateral prism such that the angle of incidence is equal to		
	the angle of emergence and each of these equal to 3/4 of the angle of the prism. What is the		
	value of angle of deviation?		
	Section - C		
	All questions are compulsory. In case of internal choices, attempt any one.		
22	(a) State two distinguishing features of nuclear force. (b) Draw a plot showing the variation of		
	potential energy of a pair of nucleons as a function of their separation. Mark the regions on	3	
	the graph where the force is (i) attractive, and (ii) repulsive.		
23	A spherical conducting shell of inner radius r_1 and outer radius r_2 has a charge Q. A charge q is		
	placed at the centre of the shell.		
	i) Find out the surface charge density on the inner and outer surfaces of the shell.		
	ii) Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any		
	irregular shape? Explain.		

24	The following graph shows the variation of photocurrent for a photosensitive metal:		
	\uparrow \uparrow		
	Photocurrent		
		z	
		5	
	A O X		
	(i) Identify the variable X on the horizontal axis.		
	(ii) What does the point A on the horizontal axis represent?		
	(iii) Draw this graph for three different values of frequencies of incident radiation v1, v2 and		
	$v_3(v_1 > v_2 > v_3)$ for same intensity.		
25	(1) Draw this graph for three different values of intensities of incluent radiation E1 and E2 are two batteries baying emf of 3V and 4V and internal resistances of 20 and 10		
25	respectively. They are connected as shown in Figure below. Using Kirchhoff 's Laws of		
	electrical circuits, calculate the currents 1 and 12		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$3\mathbf{y}, 2\Omega \stackrel{\perp}{=} \mathbf{E}_1$ $\mathbf{E}_2 \stackrel{\perp}{=} 4\mathbf{y}, 1\Omega$	3	
	$\mathbf{R}_{1} = 4\Omega \qquad \qquad \mathbf{R}_{3} \leq 8\Omega \qquad \qquad$		
	E E D		
26	a) Draw the intensity nattern for single slit diffraction and double slit interference. Hence		
20	state two differences between interference and diffraction patterns.	3	
	b) In a single slit diffraction experiment, width of the slit is increased. How will the (i) size and	-	
	(ii) intensity of central bright band be affected? Justify your answer.		
27	a) Identify the part of electromagnetic spectrum used in (i) radar and (ii) eye surgery		
	b) Identify the electromagnetic waves whose wavelengths vary as:	3	
	(i) 10^{-12} m < λ < 10^{-8} m (ii) 10^{-3} m < λ < 10^{-1} m. Write one use for each.		
28	(a) Define mutual inductance.		
	(b) If a change in current of 0.01 A in one coil produces a change in magnetic flux of 2×10^{-2} Wb		
	In the other coil, what is the mutual inductance (in henry) of the two coils?		
	(c) A pair of adjacent coils has a mutual inductance of 1.5 H. If the current in one coil changes from 0 to 20 A in 0 F c, what is the change of flux linkage with the other coil?		
	Torr o to zo A in 0.5 S, what is the change of hux inkage with the other con!	z	
	OR		
	(a) Draw a labelled diagram of a step-up transformer. Obtain the ratio of secondary to primary		
	voltage in terms of number of turns and currents in the two coils.		
	(b) A power transmission line feeds input power at 2200 V to a step-down transformer with its		
	primary windings having 3000 turns. Find the number of turns in the secondary to get the		
	power output at 220 V.		
29	Read the passage given below and answer the questions that follow.		
	p-n junction aloae:		
	p-n junction is a semiconductor diode. It is obtained by bringing p-type semiconductor in close contact with n- type semiconductor. A thin layer is developed at the n-n junction which is		
	devoid of any charge carrier but has immobile ions. It is called depletion layer. At the junction		
	a potential barrier appears, which does not allow the movement of majority charge carriers		
	a potential suffer appeals, when does not allow the movement of majority charge carriers		

	OR		
	(iv) In a Young's double slit experiment, the separation between the slits is 0.1 mm, the		
	wavelength of light used is 600 nm and the interference pattern is observed on a screen 1m		
	away. Find the separation between bright fringes.		
	(a) 6.6 mm (b) 6.0 mm (c) 6 m (d) 60cm		
	Section – E		
	All questions are compulsory. In case of internal choices, attempt any one of them.		
31	 i) An electric field is uniform and acts along + x direction in the region of positive x. It is also uniform with the same magnitude but acts in - x direction in the region of negative x. The value of the field is E = 200 N/C for x > 0 and E = - 200 N/C for x < 0. A right circular cylinder of length 20 cm and radius 5 cm has its centre at the origin and its axis along the x-axis so that one flat face is at x = + 10 cm and the other is at x = - 10 cm. Find: (a) What is the net outward flux through the side of the cylinder? (b) What is the net outward flux through the cylinder? (c) what is net charge inside the cylinder? (d) What is the net charge inside the cylinder? ii) An electric dipole of length 2 cm, when placed with its axis making an angle of 60⁰ with a uniform electric field of 10⁵ N/C. If it experiences a torque of 8√3 Nm. Calculate the magnitude 		
	of charge on the dipole, and its potential energy.		
	OR	5	
	i) Find the expression for the potential energy of a system of two point charges q1 and q2 located at r1 and r2 vectors, respectively in an external electric field E vector. ii) Draw equipotential surfaces due to an isolated point charge (– q) and depict the electric field lines. iii) Three point charges + 1 μ C, – 1 μ C and + 2 μ C are initially infinite distance apart. Calculate the work done in assembling these charges at the vertices of an equilateral triangle of side 10 cm.		
32	A 2 μ F capacitor. 100 Ω resistor and 8 H inductor is connected in series with an ac source.		
	i) Find the frequency of the ac source for which the current drawn in the circuit is maximum.What is this frequency called?ii) If the peak value of emf of the source is 200 V, calculate the maximum current.		
	iii)Draw a graph showing variation of amplitude of circuit current with changing frequency of applied voltage in a series LCR circuit for two different values of resistance R1 and R2 (R1 > R2) iv) In a series LCR circuit, $V_L = V_C \neq V_R$. What is the value of power factor for this circuit? OR	5	
	I ne figure snows a series LCK circuit connected to a variable frequency 230 V source. L = 5.0 H,		
	$C = 80 \ \mu F, R = 40 \ \Omega.$		
	i) Determine the source frequency which drives the circuit in resonance.		

	ii) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency. iii) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency. iv) A device 'X' is connected to an ac source $V = V_0 \sin \omega t$. The variation of voltage, current and power in one cycle is shown in the following graph:	
	$\begin{array}{c} Y \\ A \\ B \\ 0 \\ \pi/_2 \\ \end{array}$	
	a) Identify the device 'X'.	
	b) Which of the curves A, B and C represent the voltage, current and the power consumed in the circuit? Justify your answer.	
33	What is the difference in the construction of an astronomical telescope and a compound	
	microscope? The focal lengths of the objective and eyepiece of a compound microscope are	
	1.25 cm and 5.0 cm, respectively. Find the position of the object relative to the objective in	
	order to obtain an angular magnification of 30 when the final image is formed at the near	
	point.	5
	OR	-
	 i) Drive the mirror formula. What is the corresponding formula for a thin lens? ii) Draw a ray diagram to show the image formation by a concave mirror when the object is kept between its focus and the pole. Use this diagram, drive the magnification formula for the image formed. 	