DATE: 15/01/2024
General Instructions:

1. This question paper contains four sections A, B, C and D. Each section is compulsory.

However, there are internal choices in some questions.
2. Section A has 4 MCQ and 1 Assertion-Reason based questions of 1 mark each.
3. Section B has 2 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 2 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 1 Long Answer (LA)-type question of 5 marks .

SECTION - A [This section comprises of multiple choice questions (MCQ) of 1 mark each]			
1.	The product of $2 x y$ and $x+y$ is A) $2 x^{2} y+2 x y^{2}$ B) $x+2 x y^{2}$	C) $2 x^{2} y^{2}$	D) $2 x^{2} y+y$
2.	The area of a rectangle whose length $=5 x y$ and breadth $=3 y z$ is A) $15 x y z$ B) $15 y^{2}$ C) $15 x y^{2} z$ D) $15 x z$		
3.	The lateral surface area of a cube of side 11 cm is A) $363 \mathrm{~cm}^{2}$ B) $484 \mathrm{~cm}^{2}$ C) $242 \mathrm{~cm}^{2}$ D) $121 \mathrm{~cm}^{2}$		
4.	The area of a rhombus whose diagonals are 10 cm and 24 cm is A) $960 \mathrm{~cm}^{2}$ B) $480 \mathrm{~cm}^{2}$ C) $240 \mathrm{~cm}^{2}$ D) $120 \mathrm{~cm}^{2}$		
5.	A statement of assertion is followed by a statement of reason. Choose the correct option. Assertion (A) : Volume of a cube of side 11 cm is $1331 \mathrm{~cm}^{3}$. Reason (R) : Volume of a cube of side a is $6 a^{2}$. A) Both Assertion and Reason are true, and Reason is the correct explanation for Assertion. B) Both Assertion and Reason are true, but Reason is not the correct explanation for Assertion. C) Assertion is true, but Reason is false. D) Assertion is false, but Reason is true.		
SECTION - B [This section comprises of very short answer type questions (VSA) of 2 marks each]			
6.	A right circular cylinder has base radius 8 cm and height 35 cm . Find the curved surface area of the cylinder. $\left[\pi=\frac{22}{7}\right]$		

7.	Find the product $\quad(3 a b c)\left(4 a^{2} b c^{2}\right)\left(5 a b^{2} c\right)$ OR Simplify $a(b-c)+b(c-a)+c(a-b)$
	SECTION - C [This section comprises of short answer type questions (SA) of 3 marks each]
8.	A cuboid is of dimensions $75 \mathrm{~cm} \times 60 \mathrm{~cm} \times 50 \mathrm{~cm}$. How many small cubes with sides 5 cm can be placed in the given cuboid? OR A rectangular piece of paper $33 \mathrm{~cm} \times 16 \mathrm{~cm}$ is folded without overlapping to make a cylinder of height 16 cm . Find the volume of the cylinder. $\left[\pi=\frac{22}{7}\right]$
9.	Simplify $(x-y)\left(x^{2}+x y+y^{2}\right)$
	SECTION - D [This section comprises of long answer type question (LA) of 5 marks]
10	The internal measures of a cuboidal room are $12 \mathrm{~m} \times 8 \mathrm{~m} \times 4 \mathrm{~m}$. Find the total cost of painting all four walls and the ceiling of the room at the rate of $₹ 50$ per m^{2}. OR Simplify $3 y(2 y-7)-3(y-4)-60$ and evaluate for $y=(-2)$ and $y=2$

Q. No.	Answers	MARKS
1)	A) $2 x^{2} y+2 x y^{2}$	1
2)	C) $15 x y^{2} z$	1
3)	B) $484 \mathrm{~cm}^{2}$	1
4)	D) $120 \mathrm{~cm}^{2}$	1
5)	C) Assertion is true, but Reason is false.	1
6)	$\begin{aligned} \mathrm{r} & =8 \mathrm{~cm} \\ \mathrm{~h} & =35 \mathrm{~cm} \\ \mathrm{CSA} & =2 \pi \mathrm{rh} \\ & =2 \times \frac{22}{7} \times 8 \times 35 \\ & =1760 \mathrm{~cm}^{2} \end{aligned}$	$1 / 2$ 1 $1 / 2$
7)	$\begin{aligned} (3 a b c)\left(4 a^{2} b c^{2}\right)\left(5 a b^{2} c\right) & =3 \times 4 \times 5 \times a \times a^{2} \times a \times b \times b \times b^{2} \times c \times c^{2} \times c \\ & =60 a^{4} b^{4} c^{4} \end{aligned}$ OR $\begin{aligned} a(b-c)+b(c-a)+c(a-b) & =a b-a c+b c-a b+a c-b c \\ & =0 \end{aligned}$	1 1 1 1
8)	$\begin{aligned} \text { No. of cubes }= & \frac{V(\text { Cuboid })}{V(\text { Cube })} \\ & =\frac{1 \times \mathrm{bxh}}{\mathrm{a}^{3}} \\ & =\frac{75 \times 60 \times 50}{5 \times 5 \times 5} \\ & =1800 \end{aligned}$	1 1 1

	$\begin{aligned} \mathrm{I} & =33 \mathrm{~cm} \\ \mathrm{~b} & =16 \mathrm{~cm} \\ \mathrm{C} & =\text { length of the paper } \\ 2 \pi \mathrm{r} & =33 \\ \mathrm{r} & =\frac{21}{4} \\ \mathrm{~V} & =\pi \mathrm{r}^{2} \mathrm{~h} \\ & =\frac{22}{7} \times \frac{21}{4} \times \frac{21}{4} \times 16 \\ & =1386 \mathrm{~cm}^{3} \end{aligned}$	$1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$
9)	$\begin{aligned} (x-y)\left(x^{2}+x y+y^{2}\right) & =x^{3}+x^{2} y+x y^{2}-x^{2} y-x y^{2}-y^{3} \\ & =x^{3}-y^{3} \end{aligned}$	2 1
10)	$\begin{aligned} A & =2 \mathrm{~h}(\mathrm{l}+\mathrm{b})+\mathrm{lb} \\ & =2 \times 4(12+8)+12 \times 8 \\ & =2 \times 4 \times 20+96 \\ & =256 \mathrm{~m}^{2} \\ \text { Cost of painting } & =256 \times 50 \\ & =₹ 12800 \end{aligned}$ OR $\begin{gathered} 3 y(2 y-7)-3(y-4)-60=6 y^{2}-21 y-3 y+12-60 \\ =6 y^{2}-24 y-48 \end{gathered}$ For $\mathrm{y}=(-2), \quad 6 \mathrm{y}^{2}-24 \mathrm{y}-48=6 \times(-2)^{2}-24 \mathrm{x}(-2)-48$ $=24+48-48$ $=24$ For $\mathrm{y}=2$, $\begin{aligned} 6 y^{2}-24 y-48 & =6 \times(2)^{2}-24 \times 2-48 \\ & =24-48-48 \\ & =(-72) \end{aligned}$	1 1 1 1 1 1 1 1 1 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

