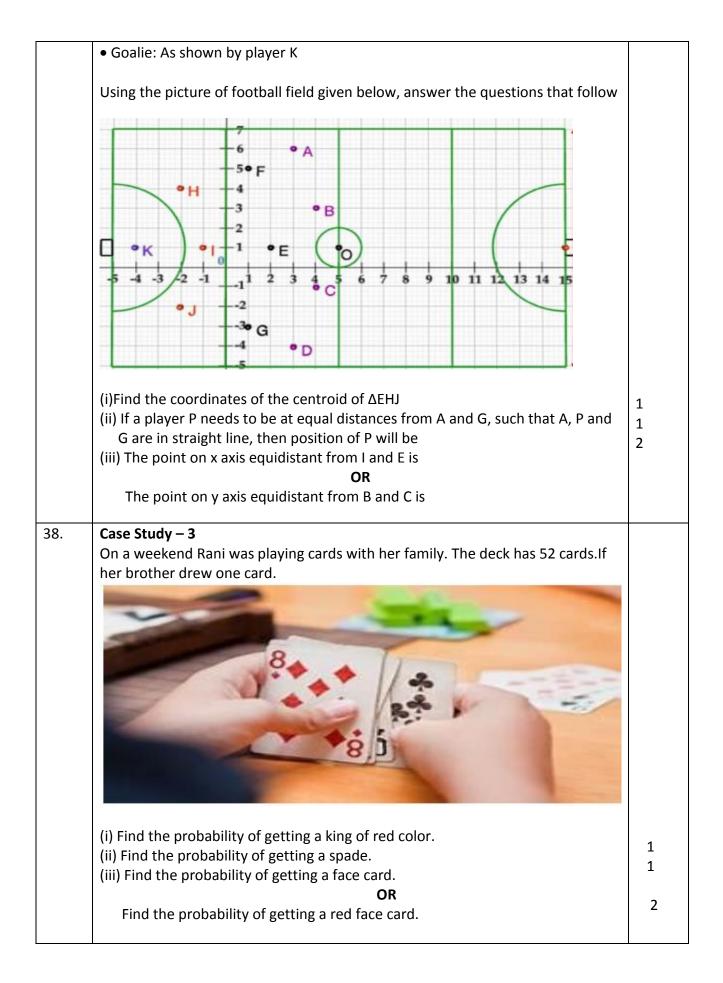


INDIAN SCHOOL SOHAR PRE-BOARD I EXAMINATION (2023-24) MATHEMATICS STANDARD (041)

CLASS: X DATE: 20/01/24 MAX. MARKS: 80 TIME: 3 HOURS

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.


- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 2 marks, 2 Questions of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat diagrams wherever required. Take π = 22/7 wherever required if not stated.

		S	ECTION A				
Section A consists of 20 questions of 1 mark each.							
Q. No					Marks		
1	$ f x = 2^{3} x 3 x$	If $x = 2^{3}x 3 x 5^{2}$ and $y = 2^{2}x 3^{3}$ then HCF (x, y) is:					
	(a) 12	(b) 108	(c) 6	(d)36	1		
2	If α , β are zeroes of $x^2 - 6x + k$, what is the value of "k" if $3\alpha + 2\beta = 20$?						
	(a) 8	(b)2	(c) - 16	(d) - 8	1		
3	The value of "c" for which the pair of equations $cx - y = 2$ and $6x - 2y = 4$ will have infinitely many solutions is				1		
	(a) — 3	(b) 3	(c) - 12	(d) 12			
4	In figure, if D	E BC, then x equals			1		
	3 cm 4 cm B 14 cm C						
	(a) 6	(b) 7	(c) 3	(d) 4			
5	The roots of the equation $2x^2 + 5x + 5 = 0$ are						
	(a)Real and distinct (b) Not real (c) Real and equal (d)None of these						
6	If $ax^2 + bx + c = 0$ has equal roots, then c is equal to:						
	(a) $\frac{-b}{2a}$	2u	(c) $\frac{-b^2}{4a}$	(d) $\frac{b^2}{4a}$			
7	If $p - 1$, $p + 3$, $3p - 1$ are in A.P, then p is equal to:						
	(a) 4	(b) - 4	(c) 2	(d) - 2			

8	If the distance between the points (4, p) and (1, 0) is 5, then the value of p is	1					
	(a)4 (b) ± 4 (c) -4 (d) 0						
9	The coordinates of the centroid of the triangle with vertices (a, 0), (0, b) and						
	(a, b) are						
	(a) $(\frac{a}{2}, \frac{b}{2})$ (b) $(\frac{a}{3}, \frac{b}{3})$ (c) $(\frac{2a}{3}, \frac{2b}{3})$ (d)None of these						
10	In the figure \triangle ABC $\sim \triangle$ PQR, then y + z is						
	P y R A $\frac{B}{4\sqrt{3}}$ C						
	(a) $2\sqrt{3}$ (b) $4 + 3\sqrt{3}$ (c) $4 + \sqrt{3}$ (d) $3 + 4\sqrt{3}$						
11	The pair of linear equations $x - 2y = 0$ and $3x + 4y = 20$ have:	1					
	(a)one solution (b) two solution (c) no solution (d) many solutions						
12	If x tan 45° .cos 60° = sin 60° .cot 60° , then x is equal to	1					
	(a)1 (b) $\sqrt{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}$						
13	If sec θ – tan $\theta = \frac{1}{3}$, the value of (sec θ + tan θ) is						
	(a)1 (b)2 (c) 3 (d)4						
14	The distance between two parallel tangents of a circle of radius 5 cm is	1					
	(a)5 cm (b)10 cm (c) 15 cm (d) 2.5 cm						
15	If the perimeter and the area of a circle are numerically equal, then the radius of the circle is						
	(a)2 units (b)3 units (c) 4 units (d)5 units						
16	If mode of a data is 45, mean is 27, then median is	1					
	(a)30 (b) 27 (c)23 (d) None of these						
17	The total surface area of a solid hemisphere of radius 7 cm is						
	(a) 447 πcm^2 (b) 239 πcm^2 (c) 147 πcm^2 (d) 174 πcm^2						
18	The probability that a leap year has 53 Sundays is	1					
	(a) $\frac{1}{7}$ (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ (d) $\frac{4}{7}$						
	ASSERTION REASON BASED QUESTIONS:						
	In question numbers 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.						
	 (a)Both (A) and (R) are true and (R) is the correct explanation of (A) (b) Both (A) and (R) are true but (R) is not the correct explanation of (A) (c) (A) is true but (R) is false. (d) (A) is false but (R) is true. 						
19	Assertion (A): In a circle of radius 6 cm, the angle of a sector 60 ⁰ . Then the area						
	of the sector is $18\frac{6}{7}$ cm ²						
	Reason (R): Area of the circle with radius r is πr^2						
20	Assertion (A): Common difference of the AP: -5, -1, 3, 7, is 4. Reason(R): Common difference of the AP: a, a + d, a + 2d, is given by $d = a_2 - a_1$	1					

	SECTION B				
	Section B consists of 5 questions of 2 marks each.				
21	Explain why 7 \times 11 \times 13 + 13 is a composite number.	2			
22	If α and β are the zeroes of $f(x) = 2x^2 + 5x + k$ such that $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, find the value of "k "	2			
	OR Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $\frac{1}{3}$ respectively.				
23	In \triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the value of sin P.				
24	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle				
25	Prove that, the diagonals of a trapezium divide each other proportionally. OR	2			
	D is a point on the side BC of a triangle ABC such that \angle ADC = \angle BAC. Show that CA ² = CB.CD				
	SECTION C				
	Section C consists of 6 questions of 3 marks each.				
26	Prove that 5 + 6 $\sqrt{3}$ is irrational	3			
27	Solve for x and y: $\sqrt{2} x + \sqrt{3} y = 0$, $\sqrt{3} x - \sqrt{8} y = 0$ OR	3			
	Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?				
28	Prove that the lengths of tangents drawn from an external point to a circle are equal.	3			
29	The minute hand of a clock is $\sqrt{21}$ cm long. Find the area swept by the minute hand on the face of the clock from 7.00 am to 7.05 am				
30	If $\sqrt{3} \tan \theta = 3\sin \theta$, then prove that $\sin^2 \theta - \cos^2 \theta = \frac{1}{3}$ OR	3			
	If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$, then show that $\tan \theta = \frac{1}{\sqrt{3}}$				
31	A toy is in the form of a cone mounted on a hemisphere of common base radius 7 cm. The total height of the toy is 31 cm. Find the total surface area of the toy.	3			
	SECTION D				
	Section D consists of 4 questions of 5 marks each				
32	From an aeroplane vertically above a straight horizontal road, the angles of depression of two consecutive kilometer stones on opposite sides of the aeroplane are observed to be 60° and 30°. Show that height (in meters) of				
	aeroplane above the road is $\frac{\sqrt{3}}{4}$ km	5			

	The angle of elevation of the top of a tower as observed from a point on the ground is ' α ' and on moving 'a' meter towards the tower, the angle of elevation is ' β '. Prove that the height of the tower is $\frac{a \tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$								
33	In the figure, PA, QB and RC are perpendiculars to AC. Prove that $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$						5		
					z z	> > >	y y		
34	The speed of a boat in still water is 15 km/hr. It can go 30 km upstream and return downstream to the original point in 4 hours 30 minutes. Find the speed of the stream.						5		
35	The median of	of the dis	tribution	given be	low is 35.	Find the	value of >	(and Y, if	5
	the sum all fr	· · ·							
	Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	
	Frequency	10	20	X	40 DR	Y	25	15	
	Calculate the	mode o	f the follo	-		stribution	table		
	Class	Above	Above	Above	Above	Above	Above	Above	
		25	35	45	55	65	75	85	
	Frequency	52	47	37	17	8	2	0	
			•	SECT		-			
	SECTION E								
	Section E has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.								
36	with sub-parts of the values of 1, 1 and 2 marks each respectively. Case Study – 1								
	In the month of April to June 2022, the exports of passenger cars from India								
	increased by			-	•			•	
	car manufacturing company planned to produce 1800 cars in 4th year and 2600								
	cars in 8th year. Assuming that the production increases uniformly by a fixed number every year.								
	Based on the above information answer the following questions.								
	(i) Find the production in the 1st year.						1		
	(ii) Find the production in the 12th year						1		
	(iii) Find the total production in first 10 years. OR						2		
	In wh	nich vear	the total	-		ach to 15()00 cars?		
37	In which year the total production will reach to 15000 cars? Case Study – 2								
	 A football field is given below. Each team plays with 11 players on the field during the game including the goalie. Positions you might play include- Forward: As shown by players A, B, C and D. Midfielders: As shown by players E, F and G. Fullbacks: As shown by players H, I and J. 								

*****END*****