MATHEMATICS STANDARD (041)

CLASS: X
DATE: 20/01/24

MAX. MARKS: 80
TIME: 3 HOURS

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.
2. Section A has 20 MCQs carrying 1 mark each.
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Questions of 2 marks, 2 Questions of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
8. Draw neat diagrams wherever required. Take $\pi=22 / 7$ wherever required if not stated.

	SECTION A	
Section A consists of $\mathbf{2 0}$ questions of 1 mark each.		
Q. No		Marks
1	The pair of linear equations $x-2 y=0$ and $3 x+4 y=20$ have: (a)one solution (b) two solution (c) no solution (d) many solutions	1
2	If $x \tan 45^{\circ} \cdot \cos 60^{\circ}=\sin 60^{\circ} \cdot \cot 60^{\circ}$, then x is equal to (a) 1 (b) $\sqrt{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}$	1
3	If $\sec \theta-\tan \theta=\frac{1}{3}$, the value of $(\sec \theta+\tan \theta)$ is (a) 1 (b) 2 (c) 3 (d) 4	1
4	The distance between two parallel tangents of a circle of radius 5 cm is (a) 5 cm (b) 10 cm (c) 15 cm (d) 2.5 cm	1
5	In the figure $\triangle A B C \sim \triangle P Q R$, then $y+z$ is (a) $2 \sqrt{3}$ (b) $4+3 \sqrt{3}$ (c) $4+\sqrt{3}$ (d)) $3+4 \sqrt{3}$	1
6	If mode of a data is 45 , mean is 27 , then median is (a) 30 (b) 27 (c) 23 (d) None of these	1
7	The total surface area of a solid hemisphere of radius 7 cm is (a) $447 \pi \mathrm{~cm}^{2}$ (b) $239 \pi \mathrm{~cm}^{2}$ (c) $147 \mathrm{mcm}^{2}$ (d) $174 \mathrm{mcm}^{2}$	1

8	The probability that a leap year has 53 Sundays is (a) $\frac{1}{7}$ (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ (d) $\frac{4}{7}$	1	
9	The coordinates of the centroid of the triangle with vertices $(a, 0),(0, b)$ and (a, b) are (a) $\left(\frac{a}{2}, \frac{b}{2}\right)$ (b)) $\left(\frac{a}{3}, \frac{b}{3}\right)$ (c)) $\left(\frac{2 a}{3}, \frac{2 b}{3}\right)$ (d)None of these	1	
10	If the perimeter and the area of a circle are numerically equal, then the radius of the circle is (a) 2 units (b) 3 units (c) 4 units (d) 5 units	1	
11	If $x=2^{3} \times 3 \times 5^{2}$ and $y=2^{2} \times 3^{3}$ then HCF (x, y) is: (a) 12 (b) 108 (c) 6 (d) 36	1	
12	If α, β are zeroes of $x^{2}-6 x+k$, what is the value of " k " if $3 \alpha+2 \beta=20$? (a) 8 (b) 2 (c) -16 (d) -8	1	
13	The value of "c" for which the pair of equations $c x-y=2$ and $6 x-2 y=4$ will have infinitely many solutions is (a) -3 (b) 3 (c) -12 (d) 12	1	
14	In figure, if $D E \\| B C$, then x equals (a) 6 (b) 7 (c) 3 (d) 4	1	
15	The roots of the equation $2 x^{2}+5 x+5=0$ are (a)Real and distinct (b) Not real (c) Real and equal (d)None of these	1	
16	If $a x^{2}+b x+c=0$ has equal roots, then c is equal to: (a) $\frac{-b}{2 a}$ (b) $\frac{b}{2 a}$ (c) $\frac{-b^{2}}{4 a}$ (d) $\frac{b^{2}}{4 a}$	1	
17	If $p-1, p+3,3 p-1$ are in A.P., then p is equal to: (a) 4 (b) -4 (c) 2 (d) -2	1	
18	If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of p is (a) 4 (b) ± 4 (c) -4 (d) 0	1	
	ASSERTION REASON BASED QUESTIONS: In question numbers 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a)Both (A) and (R) are true and (R) is the correct explanation of (A) (b) Both (A) and (R) are true but (R) is not the correct explanation of (A) (c) (A) is true but (R) is false. (d) (A) is false but (R) is true.		
19	Assertion (A): In a circle of radius 6 cm , the angle of a sector 60°. Then the area of the sector is $18 \frac{6}{7} \mathrm{~cm}^{2}$ Reason (\mathbf{R}): Area of the circle with radius r is $2 \pi r^{2}$	1	
20	Assertion (A): Common difference of the AP: -5, -1, 3, 7, \qquad is 4 . Reason(R): Common difference of the AP: a, a $+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}$, \qquad is given by $d=a_{1}-a_{2}$	1	

	(iii) Find the probability of getting a face card. OR Find the probability of getting a red face card.	2
37.	Case Study - 2 In the month of April to June 2022, the exports of passenger cars from India increased by 26% in the corresponding quarter of 2021-22, as per a report. A car manufacturing company planned to produce 1800 cars in 4th year and 2600 cars in 8th year. Assuming that the production increases uniformly by a fixed number every year. Based on the above information answer the following questions. (i) Find the production in the 1st year. (ii) Find the production in the 12th year (iii) Find the total production in first 10 years. OR In which year the total production will reach to 15000 cars?	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$
38	Case Study - 3 A football field is given below. Each team plays with 11 players on the field during the game including the goalie. Positions you might play include- - Forward: As shown by players A, B, C and D. - Midfielders: As shown by players E, F and G. - Fullbacks: As shown by players H, I and J. - Goalie: As shown by player K Using the picture of football field given below, answer the questions that follow (i)Find the coordinates of the centroid of $\triangle \mathrm{EHJ}$ (ii) If a player P needs to be at equal distances from A and G, such that A, P and G are in straight line, then position of P will be (iii) The point on x axis equidistant from I and E is OR The point on y axis equidistant from B and C is	1 1 2

