INDIAN SCHOOL SOHAR

TERM - I (2023-24)
MATHEMATICS
CLASS: XI
MAX. MARKS: 80
DATE: 21/09/2023 TIME: 3 Hours

General Instructions:

1. This Question paper contains - four sections A, B, C and D. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 2 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 mark each.
4. Section C has 6 Short Answer (SA)-type questions of 3 mark each.
5. Section D has 4 Long Answer (LA)-type questions of 5 mark each.
6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub parts.

SECTION - A

1.	The smallest set A such that $A \cup\{1,2\}=\{1,2,3,59\}$ is (a) $\{3,5,9\}$ (b) $\{1,2,3,5,9\}$ (c) $\{1,2,5,9\}$ (d) \varnothing	MARKS 1
2.	Empty set is a \qquad (a) Finite set (b) Infinite set (c) invalid set (d) $\{\varnothing\}$	1
3.	If X and Y are two sets, then $X \cap(X \cup Y)^{\prime}$ is equal to (a) X (b) $X \cap Y$ (c) $\{0\}$ (d) \varnothing	1
4.	Which of the following is correct for $\mathrm{A}-\mathrm{B}$? (a) $A \cap B$ (B) $A^{\prime} \cap B$ (c) $A^{\prime} \cap B^{\prime}$ (d) $B^{\prime} \cap A$	1
5.	The domain of the function $f(x)=\frac{1}{1+x^{2}}$ (a) $\mathrm{R}-\{1\}$ (b) $R-\{-1\}$ (c) $\mathrm{R}-\{-1,1\}$ (d) R	1
6.	The domain for which the functions defined by $f(x)=5 x^{2}-1$ and $g(x)=5+x$ are equal is: (a) $\left\{-1, \frac{5}{6}\right\}$ (b) $\left\{-1,-\frac{6}{5}\right\}$ (c) $\left\{-1, \frac{6}{5}\right\}$ (d) $\left\{-1, \frac{-6}{5}\right\}$	1
7.	The range of the function given by $f(x)=5-\|x+4\|$ (a) $\{-5, \infty\}$ (b) $[5, \infty)$ (c) $(-\infty, 5]$ (d) $\{0,5\}$	1
8.	The radian measure corresponding to $-37^{\circ} 30^{\prime}$ (a) $-\frac{24 \pi}{5}$ (b) $-\frac{5 \pi}{24}$ (c) $\frac{24 \pi}{5}$ (d) $\frac{5 \pi}{24}$	1
9.	The value oftan $\left(-1590^{\circ}\right)$ is (a) -1 (b) $-\frac{1}{\sqrt{3}}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{3}$	1
10.	In a triangle $\mathrm{ABC}, \operatorname{cosec} A(\sin B \cos C+\cos B \sin C)$ equals to (a) 1 (b) -1 (c) 0 (d) none of these	1
11.	The value of i^{-999} is (a) $-i$ (b) i (c) -1 (d) 1	1

12.	The value of $\sqrt{-25}+3 \sqrt{-4}+2 \sqrt{-9}$ is (a) $-13 i$ (b) $13 i$ (c) $-17 i$ (d) $17 i$	1
13.	The value of x and y if $(3 y-2)-i(7-2 x)=0$ (a) $x=7 / 2, y=2 / 3$ (b) $x=2 / 3, y=2 / 7$ (c) $x=-7 / 2, y=-2 / 3$ (d) $x=7, y=2$	1
14.	The solution of the inequality $\|x-1\|<2$ is (a) $[-1, \infty]$ (b) $(-1, \infty)$ (c) $[-1,3]$ (d) $(-1,3)$	1
15.	The domain of the function f given by $f(x)=\frac{x^{2}+2 x+1}{x^{2}-x-6}$ is (a) $R-\{3,-2\}$ (b) $R-\{-3,2\}$ (c) $R-[-3,2]$ (d) $R-(-3,2)$	1
16.	The number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices: (a) 56 (b) 65 (c) 336 (d) 24	1
17.	If ${ }_{r}^{n} P=720 \times{ }_{r}^{n} C$, then r is equal to (a) 6 (b) 4 (c) 7 (d) 3	1
18.	In how many ways can the letters of the word ABACUS be rearranged such that the vowels always appear together? (a) $\frac{6!}{2!}$ (b) $3!\times 3$! (c) $\frac{4!\times 3!}{2!}$ (d) $\frac{5!}{2!}$	1
	Q. 19 and $\mathbf{q} .20$ based on Assertion and reason based. Select the correct answer from the codes (a), (b), (c) and (d) as given below (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and but R is not the correct explanation of A (c) A is true and R is false. (d) A is false and R is true.	1
19.	Assertion (A) : $\emptyset^{\prime} \cap \boldsymbol{A}=\boldsymbol{U}^{\prime}$ Reason (\mathbf{R}) : Let U be universal set and A be subset of then $A^{\prime}=\{x: x \in U \text { and } x \notin A\}$	1
20.	Assertion (A): The inequality $3 x+2 y>5$ is strictly inequality. Reason (R): The solution of $5 x-3<7$, when x is a real number is $(-\infty, 2)$	1
	SECTION - B	
21.	If $S=\{x: x$ is a multiple of 3 less than 100$\}$ and $P=\{x: x$ is a prime number less than 20$\}$, then find $n(S)-n(P)$.	2
22.	If the arcs of the same length in two cirles subtend angles of 65° and 110° at their respective centres, find the ratio of their radii. OR The perimeter of a certain sector of a circle is equal to the length of the arc of semicircle having the same radius. Find the angle of sector in degree ($\pi=\frac{22}{7}$)	2
23.	If $z=2-3 i$, then find the value of $z^{2}-4 z+13=0$. Hence, find the value of $4 z^{3}-3 z^{2}+2 z+170$. OR If $i=\sqrt{-1}$ prove that $(x+1+i)(x+1-i)(x-1+i)(x-1-i)=x^{4}+4$	2

24.	Solve the following inequality and graph the solution set on the number line: $2 y-3<y+2 \leq 3 y+5$	2
25.	Using Binomial theorme expand : $\left(3 x^{2}-3 y\right)^{5}$	2
SECTION - C		
26.	If $A=\{1,3,5, \ldots \ldots .17\}$ and $B=\{2,4,6, \ldots \ldots, 18\}$ and N the set of natural numbers is the universal set, then show that $A^{\prime} \cup\left((A \cup B) \cap B^{\prime}\right)=N$. OR Let A and B be sets. If $A \cap X=B \cap X=\emptyset$ and $A \cup X=B \cup X$ for some set X , show that $A=B$.	3
27.	If $A=\{2,4,6,9\}, B=\{4,6,18,27,54\}$ and a relation R from A to B is defined by $R=\{(a, b): a \in A, b \in B, a$ factor of b and $a<b\}$, then find R in roster form. Also find its domain and range.	3
28.	Prove that : $\tan \left(\frac{\pi}{4}-x\right)+\tan \left(\frac{\pi}{4}+x\right)=2 \sec 2 x$	3
29.	If $(x+i y)^{3}=p+i q$ then show that $\frac{p}{x}+\frac{q}{y}=4\left(x^{2}-y^{2}\right)$ OR If α and β are different complex numbers with $\|\beta\|=1$, then prove that $\left\|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right\|=1$	3
30.	If ${ }_{r}^{n} C:{ }_{r+1}^{n} C:{ }_{r+2}^{n} C=1: 2: 3$, find n and r . OR In how many ways 3 mathematics books, 4 history books, 3 chemistry books, and 2 biology books can be arranged on a shelf so that all the books on the same subject are together?	3
31.	Using the Binomial Theorem indicate which is larger : 1.2^{4000} or 800	
SECTION - D		
32.	Find the domain and range of the following functions: (i) $\quad f(x)=1-\|x-2\|$ (ii) $f(x)=\frac{1}{\sqrt{9-x^{2}}}$	2+3
33.	Prove that : $\cos x=16 \cos ^{5} x-20 \cos ^{3} x+5 \cos x$ OR Prove that : $\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ}=\frac{1}{16}$	5
34.	If $z=x+i y$ and imaginary part of $\frac{2 z+1}{i z+1}$ is -2 , then show that $\mathrm{x}+2 \mathrm{y}-2=0$	5
35.	Find the number of arrangements of the letters of the word 'EXAMINATION'. In how many of these arrangements (i) do the words start with M (ii) do all the vowels always together (iii) do the words begin with M and end with T ? OR If all the letters of the word 'MOTHER' are written in all possible orders and the words so formed are arranged as in a dictionary order, then find the rank of word 'MOTHER'.	$\begin{gathered} 1+1+ \\ 2+1= \\ 5 \end{gathered}$

SECTION - E		
36.	During the examination days friends are revising mathematics topics and they started with the chapter on sets and topic related to operation in sets. One of the questions taken was $A=\{1,2,3,4,5\}, B=\{2,3\}$ and $C=\{5\}$ then (i) $B \cup C$ is (a) $(2,3,5)$ (b) $\}$ (c) $\{5,3,2\}$ (d) $\{5\}$ (ii) $\quad A-(B \cup C)$ is (a) $\{1,2,3,4,5\}$ (b) $\{2,3,5\}$ (c) $\{1,4\}$ (d) $\{0,3,5\}$ (iii) $(B-C)$ is (a) \varnothing (b) $\{0\}$ (c) $\{2,3\}$ (d) $\{5\}$ (iv) $(A \cap C) \cup(A \cup C)$ is equal to (a) A (b) C (c) $\}$ (d) $B \cup C$	4
37.	A chemical factory has 920 litres of a 9% solution of acid. How many litres of a 3% acid solution must be added to it so that acid content in the resulting mixture will be more than 5% but less than 7% ? Based on the above information answer the following : (i) Write the inequality to find how many litres of 3% solution will have be added. (ii) How many litres of 3% solution will have to be added? OR If water is added instead of 3% acid solution, how many litres of water to be added to get a required percent of diluted solution?	4
38.	A group of consists of 4 girls and 7 boys. In how many ways can a team of 5 members can be selected if the team has (i) no girl ? (ii) exactly 2 girls ? (iii) at least 2 girls ? OR At most 4 boys?	4

SECTION A

	$\Rightarrow\left(y+\frac{1}{3}\right)\left(y-\frac{1}{3}\right) \geq 0 \Rightarrow y \leq-\frac{1}{3} \text { or } y \geq \frac{1}{3} \text { but } y>0 \Rightarrow R_{f}=\left[\frac{1}{3}, \infty\right)$	
33	Proof	5
34	Proof	5
35	Total words in examination $=\frac{11!}{2!2!2!}=4989600$ (i) Start with $=\frac{10!}{2!2!2!}=453600$, (ii) v owels together $=\frac{6!}{2!} \times \frac{6!}{2!21}=64800$ (ii) Start with M and with $T=\frac{9!}{2!2!2!}=45360$ OR Number of word begin with $E=5!=120$, with $H=5!=120$, with $M E=4!=24, \quad M H=4!=24$, with $\mathrm{MOE}=3!=6, \mathrm{MOH}=3!=6, \mathrm{MOR}=3!=6$, with $\mathrm{MOTE}=2!=2$ total wo rd till now $=120+120+24+24+6+6+6+2=308$ next word will be MOTHER i.e. $308+1=309$	$\begin{aligned} & 1 \\ & 1+2+1 \end{aligned}$ $\begin{aligned} & 3 \\ & 1 \\ & 1 \end{aligned}$
36	(i) C (ii) C (iii) C (iv) a	$1 \times 4=4$
37	Let x Lit re be added the inequalities: (i) 3% of $x+9 \%$ of $920>5 \%$ of ($x+920$) ----eq(1) and 3% of $x+9 \%$ of $920<7 \%$ of ($x+920$)---Eq(2) (ii) solving eq (1) and eq(2) $460<x<1840$ OR let w ater be added x I 5% of $(920+x)<9 \%$ of $920<7 \%$ of $(920+x)$ on solving $262.9(a p p x)<x<736$	$\begin{aligned} & 1+1 \\ & 2 \end{aligned}$
38	(i) ${ }_{5}^{7} c$ (ii) ${ }_{2}^{4} C \times{ }_{3}^{7} C$ (iii) ${ }_{2}^{4} C \times{ }_{3}^{7} C+{ }_{3}^{4} C \times{ }_{2}^{7} C+{ }_{4}^{4} C \times{ }_{1}^{7} C$ ${ }_{1}^{7} C \times{ }_{4}^{4} C+{ }_{2}^{7} C \times{ }_{3}^{4} C+{ }_{3}^{7} C \times{ }_{2}^{4} C+{ }_{4}^{7} C \times{ }_{1}^{4} C$	$\begin{aligned} & 1+1 \\ & 2 \end{aligned}$

MATHEMATICS TERM I 2023-24

STD XI

BLUE PRINT

Ch.. NO.	CHAPTER NAME	1MARKs $^{\text {2 MARKS }}$	$\mathbf{3}^{\text {maRKs }}$	5 MARKs	4 marks (case std.)	Total mks	
1	Sets	5	1	1	--	1	14
2	Relations \& Functions	4	--	1	1	--	12
3	Trigonometric Functions	3	1	1	1	--	13
5	Complex Numbers	3	1	1	1		13
6	Linear Inequalities	2	1	--	--	1	08
7	 Combinations	3	--	1	1	1	15
8	Binomial Theorem	--	1	1	--	--	05
		$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{1 2}$	$\mathbf{8 0}$

