INDIAN SCHOOL SOHAR

TERM – I (2023-24) MATHEMATICS

CLASS: XI DATE: 21/09/2023

MAX. MARKS: 80 TIME: 3 Hours

General Instructions:

1. This Question paper contains - four sections A, B, C and D. Each section is compulsory. However, there are internal choices in some questions.

- 2. Section A has 18 MCQ's and 2 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 mark each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 mark each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 mark each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub parts.

		SECTIO	DN – A		
1.		such that <i>A</i> ∪ {1, 2} = (b) {1, 2, 3, 5, 9}		(d) Ø	MARKS 1
2.	Empty set is a (a) Finite set	(b) Infinite set	(c) invalid set	(d) {Ø}	1
3.		ets, then $X \cap (X \cup Y)$ (b) $X \cap Y$		(d) Ø	1
4.		(b) $X \cap Y$ ving is correct for A – I (B) $A' \cap B$			1
5.		(B) $A' \cap B$ function $f(x) = \frac{1}{1+x^2}$ (b) R - {-1}			1
6.	The domain for wh are equal is:	ich the functions defir (b) $\left\{-1, -\frac{6}{5}\right\}$	ned by $f(x) = 5x^2$	$x^2 - 1$ and $g(x) = 5 + x$	1
7.	The range of the fu	nction given by $f(x)$	= 5 - x + 4		1
8.		(b) $[5, \infty)$ e corresponding to -3 (b) $-\frac{5\pi}{24}$		(d) $\frac{5\pi}{24}$	1
9.	The value oftan(-			(d) $\sqrt{3}$	1
10.	In a triangle ABC, cosec $A(\sin B \cos C + \cos B \sin C)$ equals to (a) 1 (b) -1 (c) 0 (d) none of these				
11.	The value of i^{-999} i (a) $-i$	-	(c) -1	(d) 1	1

12.	The value of $\sqrt{-25} + 3\sqrt{-4} + 2\sqrt{-9}$ is	1				
	(a) $-13i$ (b) $13i$ (c) $-17i$ (d) $17i$					
13.	The value of x and y if $(3y - 2) - i(7 - 2x) = 0$	1				
	(a) $x = 7/2$, $y = 2/3$ (b) $x = 2/3$, $y = 2/7$ (c) $x = -7/2$, $y = -2/3$ (d) $x = 7$, $y = 2$					
14.	The solution of the inequality $ x - 1 < 2$ is	1				
	(a) $[-1,\infty]$ (b) $(-1,\infty)$ (c) $[-1, 3]$ (d) $(-1, 3)$					
15.	The domain of the function f given by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ is	1				
	(a) $R - \{3, -2\}$ (b) $R - \{-3, 2\}$ (c) $R - [-3, 2]$ (d) $R - (-3, 2)$					
16.	The number of triangles which can be formed by joining the angular points of a	1				
	polygon of 8 sides as vertices:					
	(a) 56 (b) 65 (c) 336 (d) 24					
17.	If ${}^{n}_{r}P = 720 \times {}^{n}_{r}C$, then r is equal to	1				
	(a) 6 (b) 4 (c) 7 (d) 3					
18.	In how many ways can the letters of the word ABACUS be rearranged such that the	1				
	vowels always appear together?					
	(a) $\frac{6!}{2!}$ (b) $3! \times 3!$ (c) $\frac{4! \times 3!}{2!}$ (d) $\frac{5!}{2!}$					
	Q. 19 and q. 20 based on Assertion and reason based.	1				
	Select the correct answer from the codes (a), (b), (c) and (d) as given below					
	(a) Both A and R are true and R is the correct explanation of A					
	(b) Both A and R are true and but R is not the correct explanation of A					
	(c) A is true and R is false.					
	(d) A is false and R is true.					
19.	Assertion (A) : $\emptyset' \cap A = U'$					
	Reason (R): Let U be universal set and A be subset of then					
	$A' = \{x : x \in U \text{ and } x \notin A\}$					
20.	Assertion (A): The inequality $3x + 2y > 5$ is strictly inequality.					
	Reason (R): The solution of $5x - 3 < 7$, when x is a real number is $(-\infty, 2)$					
	SECTION – B					
21.	If $S = \{x : x \text{ is a multiple of } 3 \text{ less than } 100\}$ and	2				
	$P = \{x: x \text{ is a prime number less than } 20\}, \text{ then find } n(S) - n(P).$					
22.	If the arcs of the same length in two cirles subtend angles of 65° and 110° at their	2				
	respective centres, find the ratio of their radii.					
	OR					
	The perimeter of a certain sector of a circle is equal to the length of the arc of					
	semicircle having the same radius. Find the angle of sector in degree ($\pi = \frac{22}{7}$)					
23.	If $z = 2 - 3i$, then find the value of $z^2 - 4z + 13 = 0$. Hence, find the value of					
	$4z^3 - 3z^2 + 2z + 170.$					
	OR					
	If $i = \sqrt{-1}$ prove that $(x + 1 + i)(x + 1 - i)(x - 1 + i)(x - 1 - i) = x^4 + 4$					

24.	Solve the following inequality and graph the solution set on the number line:			
	$2y - 3 < y + 2 \le 3y + 5$			
25.	Using Binomial theorme expand : $(3x^2 - 3y)^5$	2		
	SECTION – C			
26.	If $A = \{1, 3, 5, \dots,, 17\}$ and $B = \{2, 4, 6, \dots,, 18\}$ and N the set of natural numbers	3		
	is the universal set, then show that $A' \cup ((A \cup B) \cap B') = N$.			
	OR			
	Let A and B be sets. If $A \cap X = B \cap X = \emptyset$ and $A \cup X = B \cup X$ for some set X, show			
	that A = B.			
27.	If A= {2, 4, 6, 9}, B= {4, 6, 18, 27, 54} and a relation R from A to B is defined by	3		
	$R = \{(a, b): a \in A, b \in B, a \text{ factor of } b \text{ and } a < b \}$, then find R in roster form.			
	Also find its domain and range.			
28.	Prove that : $tan\left(\frac{\pi}{4} - x\right) + tan\left(\frac{\pi}{4} + x\right) = 2 \sec 2x$	3		
29.	If $(x + iy)^3 = p + iq$ then show that $\frac{p}{x} + \frac{q}{y} = 4(x^2 - y^2)$	3		
	OR			
	If α and β are different complex numbers with $ \beta = 1$, then prove that $\left \frac{\beta - \alpha}{1 - \overline{\alpha}\beta}\right = 1$			
30.	If ${}^{n}_{r}C : {}^{n}_{r+1}C : {}^{n}_{r+2}C = 1 : 2 : 3$, find n and r.	3		
	OR			
	In how many ways 3 mathematics books, 4 history books, 3 chemistry books, and 2			
	biology books can be arranged on a shelf so that all the books on the same subject are			
	together?			
31.	Using the Binomial Theorem indicate which is larger : 1.2^{4000} or 800			
	SECTION – D	2+3		
32.	Find the domain and range of the following functions:			
	(i) $f(x) = 1 - x - 2 $ (ii) $f(x) = \frac{1}{\sqrt{9 - x^2}}$			
33.	Prove that : $\cos x = 16 \cos^5 x - 20 \cos^3 x + 5 \cos x$	5		
	OR			
	Prove that : $\cos 6^\circ \cos 42^\circ \cos 66^\circ \cos 78^\circ = \frac{1}{16}$			
34.	If $z = x + iy$ and imaginary part of $\frac{2z+1}{iz+1}$ is -2, then show that $x + 2y - 2 = 0$	5		
35.	Find the number of arrangements of the letters of the word 'EXAMINATION'. In how	1+1+		
	many of these arrangements	2+1=		
	(i) do the words start with M (ii) do all the vowels always together	5		
	(iii) do the words begin with M and end with T?			
	OR			
	If all the letters of the word 'MOTHER' are written in all possible orders and the			
	words so formed are arranged as in a dictionary order, then find the rank of word 'MOTHER'.			

	SECTION – E				
36.	During the examination days friends are revising mathematics topics and they started with the chapter on sets and topic related to operation in sets. One of the questions taken was A ={ 1,2,3,4,5 }, B= {2, 3 } and C= {5 } then (i) $B \cup C$ is				
	(i) $B \cup C$ is (a) (2, 3, 5) (b) { } (c) {5, 3, 2} (d) {5} (ii) $A - (B \cup C)$ is				
	(a) $\{1,2,3,4,5\}$ (b) $\{2,3,5\}$ (c) $\{1,4\}$ (d) $\{0,3,5\}$ (iii) $(B-C)$ is				
	(a) \emptyset (b) {0} (c) {2, 3} (d) {5} (iv) $(A \cap C) \cup (A \cup C)$ is equal to				
37.	(a) A (b) C (c) $\{\}$ (d) $B \cup C$	4			
	 A chemical factory has 920 litres of a 9% solution of acid. How many litres of a 3% acid solution must be added to it so that acid content in the resulting mixture will be more than 5% but less than 7%? Based on the above information answer the following : (i) Write the inequality to find how many litres of 3% solution will have be added. (ii) How many litres of 3% solution will have to be added? OR If water is added instead of 3% acid solution, how many litres of water to be added to get a required percent of diluted solution? 				
38.	A group of consists of 4 girls and 7 boys. In how many ways can a team of 5 members can be selected if the team has (i) no girl ? (ii) exactly 2 girls ? (iii) at least 2 girls ? OR At most 4 boys?	4			

-----000-----

THS **TERM I** -2023-24 SCORING KEY STD XI

	SECTION A					
	1-a 2-a 3-d 4-d 5-d 6-c 7-b 8-c 9-a 10-b					
	11-b 12-a 13-d 14-a 15-a 16-c 17-a 18-c 19-d 20-b					
21	S={3,6,9,1299}, P={2,5,7,11,13,17,19} n(S)= 33, n(P)= 8 \therefore n(S) - n(P) = 25	1 1				
	SECTION B					
22	Let r1 and r2 be radii, $\theta_1 = 65 \times \frac{\pi}{180}$, $\theta_2 = 110 \Rightarrow \theta_1 = \frac{13\pi}{6}$, $\theta_2 = \frac{22\pi}{6}$	1				
	$\therefore \frac{13\pi}{6} \times r_1 = \frac{22\pi}{6} \times r_2 \Rightarrow r_1 \colon r_2 = 22 \colon 13$	1				
	Let radius of circle r, sector angle θ , $\therefore r + r + r\theta = \pi r \Rightarrow \theta = \pi - 2 \Rightarrow \theta = \frac{8}{7}$					
	Angle in degree= $65^{\circ}27'18''(appx)$					
23	$Z=2-3i \Rightarrow z-2 = -3i \Rightarrow (z-2)^2 = (-3i)^2 \Rightarrow z^2 - 4z + 4 = -9 \Rightarrow z^2 - 4z + 13 = 0$	1				
	Now $4z(z^2 - 4z + 13) + 13(z^2 - 4z + 13) + 2z + 1 \Rightarrow 4z(0) + 13(0) + 2(2 - 3i) = 5 - 6i$	1				
	OR LHS $\{(x+1)^2 - i^2\} \{(x-1)^2 - i^2\} \Rightarrow (x^2 + 2x + 2)(x^2 - 2x + 2) \Rightarrow (x^2 + 2)^2 - (2x)^2 \Rightarrow x^4 + 4 = RHS$					
24	$2y - 3 < y + 2 \text{ and } y + 2 \le 3y + 5 \Rightarrow y < 5 \text{ and } y \ge -\frac{3}{2} \Rightarrow -\frac{3}{2} \le y < 5$	2				
	In set form : $y \in \left[-\frac{3}{2}, 5\right)$					
25	Using binomial th. Ans> $32x^{10} - 240x^8y + 720x^6y^2 - 1080x^4y^3 + 810x^2y^4 - 243y^5$	2				
	SECTION C					
26	Proof;	3				
27	R={(2,4), (2,6), (2,18), (2,54), (6,18), (6,54), (9,18), (9, 27), (9,4)} Domain={2,6,9}, Range={4,6,18,27,54}	1+1+1				
28	Proof	3				
29	Proof	3				
30	${}^{n}_{r}C: {}^{n}_{r+1}C = 1:2 \Rightarrow \frac{n!}{r!(n-r)!} \times \frac{(n-r-1)!(r-1)!}{n!} = \frac{1}{2} \Rightarrow \frac{r+1}{n-r} = \frac{1}{2} \Rightarrow n = 3r+2\dots(i)$					
	${}_{r+1}^{n}C: {}_{r+2}^{n}C = 2: 3 \Rightarrow \frac{n!}{(r+1)! (n-r-1)!} \times \frac{(n-r-2)! (r+1)!}{n!} = \frac{2}{3} \Rightarrow \frac{r+2}{n-r-1} = \frac{2}{3} \Rightarrow 2n = 5r + 8 (ii)$	1				
	Solving (i) and (ii) n = 14 and r = 4	1				
	OR No. of ways maths= 3!, history = 4!, chemistry = 3!, biology = 2!	1				
	Total number of arrangement= $4! \times 3! \times 4! \times 3! \times 2!$	1				
	Answer = 42472 $1.2^{4000} = (1+0.2)^{4000} = {}^{4000}C + {}^{4000}_{1}C (0.2) + other positive terms$	1				
31	$1.2^{1000} = (1 + 0.2)^{1000} = 100_{0}^{1}C + 100_{1}^{1}C (0.2) + other positive terms$ $1 + 4000(0.2) + other positive terms \Rightarrow 1 + 800 + other positive > 800$	3				
	SECTION D					
32	(i) $domain = R$, for range $ x \ge 0$ for all $x \in R \Rightarrow x - 2 \ge 0$ for all $x \in R \Rightarrow - x - 2 \le 0 \Rightarrow 1 - x - 2 \le 1$ \therefore Range = $(-\infty, 1]$	1+1=2				
	(ii) Real domain: $9 - x^2 > 0 \Rightarrow x^2 - 9 < 0 \Rightarrow (x + 3)(x - 3) < 0 \Rightarrow D_f = (-3, 3)$ Range: Let $y = \frac{1}{\sqrt{9 - x^2}} \Rightarrow x^2 = 9 - \frac{1}{y^2} \Rightarrow as x \in \mathbb{R} \therefore 9 - \frac{1}{y^2} \ge 0$ but $y^2 > 0 \Rightarrow 9y^2 - 1 \ge 0$	1 2				

	$\Rightarrow \left(y + \frac{1}{3}\right) \left(y - \frac{1}{3}\right) \ge 0 \Rightarrow y \le -\frac{1}{3} \text{ or } y \ge \frac{1}{3} \text{ but } y > 0 \Rightarrow R_f = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} (\infty)$	
33	Proof	5
34	Proof	5
35	Total words in examination $=\frac{11!}{2!2!2!}=4989600$ (i) Start with $=\frac{10!}{2!2!2!}=453600$, (ii) v owels together $=\frac{6!}{2!} \times \frac{6!}{2!21}=64800$ (ii) Start with M and with T $=\frac{9!}{2!2!2!}=45360$ OR Number of word begin with E= 5!= 120, with H= 5!=120, with ME= 4!=24, MH= 4!=24, with MOE= 3!=6, MOH= 3!=6, MOR= 3!=6, with MOTE= 2!=2 total word till now= 120+120+24 +24+6+6+6+2=308	1 1 +2 +1 3 1
36	next word will be MOTHER i.e. 308+1=309 (i) c (ii) c (iii) c (iv) a	1 1x4=4
37	Let x Lit re be added the inequalities: (i) 3% of x + 9% of 920 > 5% of (x+920)eq(1) and 3% of x + 9% of 920 <7% of (x+920)Eq(2) (ii) solving eq (1) and eq(2) $460 < x < 1840$ OR let w ater be added x l 5% of (920 + x) < 9% of 920 < 7% of (920 + x) on solving $262.9(appx) < x < 736$	1+1 2
38	(i) ${}^{7}_{5}c$ (ii) ${}^{4}_{2}C \times {}^{7}_{3}C$ (iii) ${}^{4}_{2}C \times {}^{7}_{3}C + {}^{4}_{3}C \times {}^{7}_{2}C + {}^{4}_{4}C \times {}^{7}_{1}C$ OR ${}^{7}_{1}C \times {}^{4}_{4}C + {}^{7}_{2}C \times {}^{4}_{3}C + {}^{7}_{3}C \times {}^{4}_{2}C + {}^{7}_{4}C \times {}^{4}_{1}C$	1 +1 2

MATHEMATICS TERM I 2023-24

STD XI

BLUE PRINT

Ch NO.	CHAPTER NAME	1 MARKS	2 MARKS	3 MARKS	5 MARKS	4 marks (case std.)	Total mks
1	Sets	5	1	1		1	14
2	Relations & Functions	4		1	1		12
3	Trigonometric Functions	3	1	1	1		13
5	Complex Numbers	3	1	1	1		13
6	Linear Inequalities	2	1			1	08
7	Permutations & Combinations	3		1	1	1	15
8	Binomial Theorem		1	1			05
		20	10	18	20	12	80