General Instructions:

1. This Question paper contains - four sections A, B, C and D. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 4 MCQ's and 1 Assertion-Reason based questions of 1 mark each.
3. Section B has 2 Very Short Answer (VSA)-type questions of 2 mark each.
4. Section C has 2 Short Answer (SA)-type questions of 3 mark each.
5. Section D has 1 Long Answer (LA)-type questions of 5 marks.

SECTION - A (Multiple Choice Questions) Each question carries 1 mark	
1.	For parabola $y^{2}=-8 x$, the focus and directrix are (a) $\mathrm{F}(-2,0), x=2$ (b) $F(2,0), x=-2$ (c) $F(2,0), x=2$ (d) $F(-2,0), x=-2$
2.	The foci of the ellipse are $(0, \pm 5)$ and the length of its major axis is 20 . (a) $\frac{x^{2}}{25}+\frac{y^{2}}{40}=1$ (b) $\frac{x^{2}}{75}+\frac{y^{2}}{100}=1$ (c) $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$ (d) not defined
3.	The $\lim _{x \rightarrow 0} \frac{x}{\cos x}$ (a) 1 (b) $\frac{\pi}{2}$ (c) 0 (d) not defined
4.	Find $\frac{d}{d x}\left(\frac{1}{x}+\sqrt{x}\right)$ (a) $-\frac{1}{x^{2}}+2 \sqrt{x}$ (b) $\frac{1}{x^{2}}+2 \sqrt{x}$ (c) $\frac{-1}{x^{2}}+\frac{1}{2 \sqrt{x}}$ (d) $x^{2}+2 \sqrt{x}$
5.	Assertion - Reason based question In the following question, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is correct explanation of A (b) Both A and R are true and R is not correct explanation of A (c) A is true but R is false (d) A is false but R is true Assertion (A) : The arithmetic mean between two numbers is 34 and their geometric mean is 16. The numbers are 64 and 4. Reason (R) : For two numbers a and $b, A . M .=\frac{a+b}{2}$ and G.M. $=a b$
	SECTION - B [This section comprises of very short answer type questions (VSA) of 2 marks each]
6.	If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus. [OR] Find area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.
7.	Which term of the G.P. 5, 10, 20, 40.......is 5120

	SECTION - C [This section comprises of very short answer type questions (SA) of 3 marks each]
8. 9.	Find the equation of the hyperbola whose foci are ($0, \pm 12$) and length of its latus rectum is 36 . The sum of the first three terms of a G.P is $\frac{13}{12}$ and product is -1 . Find the numbers. [OR] Find the sum $0.5+0.55+0.555+0.5555+$ \qquad upto n terms
	SECTION - D [This section comprises of long answer type questions (LA) of 5 marks]
10.	If $y=\frac{1-\tan x}{1+\tan x}$, show that $\frac{d y}{d x}=\frac{-2}{1+\sin 2 x}$ [OR] Do as directed. (a) Find the derivative of $\mathrm{y}=\left(\frac{1}{x}+\sqrt{x}\right)\left(\frac{1}{x}-\sqrt{x}\right)$ (b) Find the derivative of $f(x)=\sin x$ from first principle.

