

INDIAN SCHOOL SOHAR TERM I EXAMINATION (2023-24) MATHEMATICS (CODE -041)

DATE: 26/9/23 TIME: 3 Hours	CLASS: XII	MAX. MARKS: 80
	DATE: 26/9/23	TIME: 3 Hours

General Instructions:

1. This question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.

4. Section C has 6 Short Answer (SA) type questions of 3 marks each.

5. Section D has 4 Long Answer (LA) type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts.

SECTION – A							
Multiple Choice Questions							
	(Each question carries 1 mark)						
1.	If a relation R on the set $\{5,6,7\}$ be defined by R = $\{(5,6)\}$, then R is						
	a) Reflexive b) Transitive c) Symmetric d) None of these	Ť					
2.	The function f: $[0, \infty) \rightarrow R$ given by $f(x) = \frac{x}{x+5}$ is:						
	(a) f is both one-one and onto (b) f is one-one but not onto	1					
	(c) f is onto but not one-one (d) neither one-one nor onto						
3.	The value of sin[2 cot -1 ($\frac{-5}{12}$)] is equal to	1					
	a) $\frac{5}{12}$ b) $\frac{-5}{12}$ c) $\frac{169}{120}$ d) $\frac{-120}{169}$						
4.	The value of $\cos^{-1}(-1) + \sin^{-1}(1)$	1					
	a) π b) $\frac{3\pi}{2}$ c) $\frac{\pi}{2}$ d) $\frac{-3\pi}{2}$						
5.	If P and Q are two matrices of order 2 x p and 2 x q respectively, and p=q , then the	1					
	order of the matric (P-3Q) is						
	(a) q x2 (b)2 x 2 (c)p x q (d)2 x q						
6.	$\left \text{If} \begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix} \text{ then x equal to}$	1					
	a) 3 b) ± 6 c) ± 3 d) $\frac{1}{6}$						
7.	The solution of set of inequality 3x+5y < 4 is	1					
	a) an open half-plane not containing the origin						
	b) an open half-plane containing the origin						
	c) the whole xy-plane not containing the line 3x+5y=4						
	d) a closed half plane containing the origin						

8.	Let $f(x) = \begin{cases} x + a \text{ if } x \ge 1 \\ ax^2 + 1 \text{ if } x < 1 \end{cases}$ then f is differentiable at x = 1 if	1
	(a) a = ½ (b) a=0 (c) a=2 (d) a= 1	
9	Evaluate $\int e^x \sec(\sec x + \sin x) dx$	1
	a) $e^x \sec x + c$ b) $e^x \sec^2 x + c$ c) $e^x \tan x + c$ d) $e^x \sec x \tan x + c$	
10	The absolute maximum value of $y = x^3 - 3x + 2$ in $0 \le x \le 2$ is	1
	a)6 b) 4 c) 2 d) 0	
11	Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4,4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer. a) R is reflexive and symmetric but not transitive. b) R is reflexive and transitive but not symmetric. c) R is symmetric and transitive but not reflexive.	1
12	d) R is an equivalence relation. Evaluate : $\sin \left\{ \frac{\pi}{1} - \sin^{-1} \left(\left(-\frac{1}{1} \right) \right) \right\}$	1
	a) 0 b) $\frac{1}{2}$ c) $\frac{\sqrt{3}}{2}$ d) 1	
13	If $A = \begin{bmatrix} k & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then $A^2 = B$ is true for	1
	a) $k = -4$ b) $k = 4$ c) $k = 1$ d) for no value of k	
14	If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots + \infty}}}$ then $\frac{dy}{dx}$ is equal to	1
	a) $\frac{\cos x}{2y-1}$ b) $\frac{\cos x}{2y+1}$ c) 0 d) None of these	
15	If y = x ^x then $\frac{d^2y}{dx^2}$ is equal to	1
	a) $x^{x} \left\{ (1 + \log x)^{2} - \frac{1}{x} \right\}$ b) $x^{x} \left\{ (1 + \log x)^{2} + \frac{1}{x} \right\}$ c) 0 d) $x^{x} \left\{ (1 - \log x)^{2} + \frac{1}{x} \right\}$	
16	The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at	1
	a) 10 cm ² /s b) $\sqrt{3}$ cm ² /s c) 10 $\sqrt{3}$ cm ² /s d) $\frac{10}{-10}$ cm ² /s	
17	$\int \frac{e^{x}(1+x)}{\cos^{2}(x,e^{x})} dx$ is equal to	1
	a) $-\cot(e^x x) + c$ b) $\tan(e^x x) + c$ c) $\tan(e^x) + c$ d) $\cot(e^x) + c$	
18	$\int_{-\pi}^{\pi} \frac{dx}{dx}$ is equal to	1
	$\int \frac{J-\pi}{4} 1 + \cos 2x$	
	aj 1 vj 2 vj 5 vj 4	

	ASSERTION-REASON BASED QUESTIONS In the following questions, a statement of Assertion (A) is followed by a statement of Rea (R). Choose the correct answer out of the following choices. (a) Both (A) and (R) are true and (R) is the correct explanation of (A). (b) Both (A) and (R) are true but (R) is not the correct explanation of (A). (c) (A) is true but (R) is false. (d) (A) is false but (R) is true.	ason
19	Assertion(A): Principal value of $\cos^{-1}(1)$ is π Reason(R): Value of $\cos 0^0$ is 1	1
20	Assertion(A): The function $[x(x - 2)]^2$ is increasing in $(0,1) \cup (2, \infty)$ Reason(R): $dy/dx = 0$ when $x = 0, 1, 2$	1
	SECTION B	
	(This section comprises of very short answer type questions (VSA) of 2 marks each)	
21	Find $\int \frac{1}{dx} dx$	2
	$\int \cos^2 x (1 - \tan x)^2$	
22	Evaluate : $\int_{-1}^{1} log_e\left(\frac{5-x}{5+x}\right) dx$	2
23	Show that the given function is one- one.	2
	$f: N \rightarrow N$ is defined by $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$	
	OR	
	Let $f: \mathbb{R} \to \mathbb{R}$, such that $f(x) = x^3$. Check whether f is injective and surjective.	
24	If $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$, then find the value of k.	2
25	Find the value(s) of k so that the following function is continuous at $x = 0$	2
	$F(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0\\ \frac{1}{2}, & x = 0 \end{cases}$	
	OR	
	If $y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1$, then prove that $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$	
	SECTION C	-
	(This section comprises of short answer type questions (SA) of 3 marks each)	
26	Differentiate the following function w.r.t. x : $y = (sinx)^{tanx} + x^{cosx}$ OR If $(sinx)^{y} = (sinx)^{y}$, find dy	3
	$\frac{\ln(\cos x)^2}{\sin y} = (\sin y)^2, \tan \frac{1}{dx}$	
27	Find the area of the region bounded by $x^2 = 4y$, $y = 2$, $y = 4$ and the y-axis in the first quadrant.	3
	OR	

	Find the area of the region bounded by the curve $\frac{x^2}{16} + \frac{y^2}{9} = 1$	
28	Make a rough sketch of the region $\{(x, y): 0 \le y \le x^2, 0 \le y \le x, 0 \le x \le 2\}$ and find the area of the region using integration.	3
29	Find the area of the triangle whose vertices are (3, 8), (-4, 2) and (5, 1) OR Using cofactors of the elements of the second row, evaluate $\Delta = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}.$	3
30	Evaluate the following : $\int_{1}^{2} \frac{5x^{2}}{x^{2} + 4x + 3} dx$	3
31	Solve the following linear propramming problem graphically. Minimize $Z = 5x + 7y$ Subject to constraints; $2 x + y \ge 8$ $x + 2 y \ge 10$ $x,y \ge 0$	3
	SECTION D (This section comprises of long answer type questions (LA) of 5 marks each)	
32	Let N be the set of all natural numbers and R be a relation on N x N defined by (a ,b) R (c ,d) \Leftrightarrow a d= b c for all (a, b) ,(c, d) \in N x N . Show that R is an equivalence relation on N x N. Also, find the equivalence class of (2, 6).	5
33	Using the matrix method, solve the following system of linear equations : x - y + 2z = 7 3x + 4y - 5z = -5 2x - y + 3z = 12	5
34	Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$ OR Evaluate: $\int \frac{6x + 7}{\sqrt{(x - 5)(x - 4)}} dx$	5
35	Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume. OR Show that the right circular cylinder, open at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.	5

[This sec	tion comprises of 3 ca	SECT se- study/passage ba	ION E ased questions of 4	marks each with sub par	ts. The	
first two	case study questions dv question has two su	have three sub parts	s (i), (ii), (iii) of mark	s 1,1,2 respectively. The	third	
36	A rectangular hall is to be developed for a meeting of farmers in an agriculture college to conduct awareness amongst them about the new technique in cultivation. It is given that the floor has a fixed perimeter P.					
	i) If x and y represent: are function A in term	s the length and brea ns of x.	adth of the rectangu	lar region, then find the	1	
	ii) Find the critical poi	nt of the function A.			1	
	 iii) Use the First derivative that maximize its area OR iii) Use the Second de that maximize its area 	ative test to find the a. rivative test to find t a.	length x and breadt he length x and brea	h y of rectangular hall adth y of rectangular hall	2	
37	A manufacturer produces three types of bolts, x, y and z which he sells in two markets. Annual sales (in Rs.) are indicated below :					
	Markets		Products			
		x	у	z		
	I	10000	2000	18000		
	If unit sales prices of answer the following	x, y and z are Rs. 2.50 questions using the), Rs. 1.50 and Rs. 1. concept of matrices.	00 respectively, then		
	i) Find the total reven	ue collected from th	e Market-I		1	
	ii) Find the total rever	nue collected from th	ne Market-II		1	
	 iii) If the unit costs of the above three commodities are Rs. 2.00, Rs.1.00 and 50 paise respectively, then find the gross profit from the First market OR 					
	respectively then find	the gross profit fro	m the second marke	it		
38	The Relation betweer	the height of the pl	ant (y in cm) with re	spect to exposure to		
	sunlight is governed by the following equation $y = 6x - \frac{1}{2}x^2$ where x is the number of					
	days exposed to sunli	ght.	- 2			
	i) What is the height?	number of days it will	take for the plant to g	grow to the maximum	2	
	ii) What is the	maximum height of th	ne plant?		2	

-----THE END ------

MATHS TERM I-2023-24 SCORING KEY STD XII

	(SECTION –A)	
1.	b) Transitive	MAR KS 1
2.	b) f is one-one but not onto	1
3.	d) ; $\sin\left[2\cot^{-1}\left(\frac{-5}{12}\right)\right]$ = $\sin(2y)$	1
	$= \frac{2 \tan y}{1 + \tan^2 y}$ $= \frac{2\left(\frac{-12}{5}\right)}{1 + \left(\frac{-12}{5}\right)^2} = \frac{-\frac{24}{5}}{\frac{25 + 144}{25}} = \frac{-24}{5} \times \frac{25}{169} = \frac{-120}{169}$	
4.	(3) $\frac{3\pi}{2}$	1
5.	(d)2 x q	1
6.	b)+6	1
7.	b) an open half-plane containing the origin	1
8.	a) $a = \frac{1}{2}$	1
9	c) $e^x \tan x + c$	1
10	b)4	1
11	b) R is reflexive and transitive but not symmetric.	1
12	d) 1	1
13	d) for no value of k	1
14	a)	1
15	b) $x^{x} \left\{ (1 + \log x)^{2} + \frac{1}{x} \right\}$	1
16	c) $10\sqrt{3}$ cm ² /s	1
17	b) tan $(e^x x) + c$	1
18	a) 1	1
19	(d) (A) is false but (R) is true.	1

	Explanation: In case of Assertion:	
	$\cos^{-1}(1) = v$	
	$\cos(x) = 1$	
	$\cos y = 1$	
	$\therefore \qquad y = 0$	
	\Rightarrow Principal value of cos ⁻¹ (1) is 0	
	Hence Assertion is in correct.	
	Reason is correct.	
20	b) Both (A) and (R) are true but (R) is not the correct explanation of (A).	1
	SECTIONB	1
21	$I = \int \frac{1}{\cos^2 x \left(1 - \tan x\right)^2} dx$	1
	Put, $1 - \tan x = y$	
	So that, $-\sec^2 x dx = dy$	1
	$= \int \frac{-1 dy}{y^2} = - \int y^{-2} dy$	
	$= + \frac{1}{y} + c = \frac{1}{1 - \tan x} + c$	
22	Let $f(x) = \log_{e}\left(\frac{2-x}{2+x}\right)$	1
	We have, $f(-x) = \log_e\left(\frac{2+x}{2-x}\right) = -\log_e\left(\frac{2-x}{2+x}\right) = -f(x)$	
	So, $f(x)$ is an odd function. $\therefore \int_{-1}^{1} \log_{e} \left(\frac{2-x}{2+x}\right) dx = 0.$	
23	For one-one	1
	Case I : When x_1 , x_2 are odd natural number.	
	$\therefore \qquad f(x_1) = f(x_2) \Longrightarrow x_1 + 1 = x_2 + 1 \qquad \forall x_1, x_2 \in N$	
	$\Rightarrow x_1 = x_2$	
	<i>i.e.</i> , <i>f</i> is one-one.	
	Case II : When x_1 , x_2 are even natural number	1
	$\therefore \qquad f(x_1) = f(x_2) \Longrightarrow x_1 - 1 = x_2 - 1$	
	$\Rightarrow x_1 = x_2$	
	<i>i.e.</i> , <i>f</i> is one-one.	
	Case III : When x_1 is odd and x_2 is even natural number	
	$f(x_1) = f(x_2) \Longrightarrow x_1 + 1 = x_2 - 1$	
	\Rightarrow $x_2 - x_1 = 2$ which is never possible as the difference of odd and even number is always odd number.	
	Hence in this case $f(x_1) \neq f(x_2)$	
	<i>i.e., f</i> is one-one.	
	OR	
	F is one one and onto	

	$C_{interv} \left(\cos x \right)^{V} - \left(\sin x \right)^{X}$				
	$\operatorname{Given}\left(\cos x\right)^{y} = (\sin y)$				
	Taking log on both sides				
	$\therefore \log(\cos x)^y = \log(\sin y)^x$				
	$\Rightarrow y \log(\cos x) = x \log(\sin y)$				
	Differentiating both sides w.r.t. <i>x</i> , we get				
	$y\frac{1}{\cos x}\cdot\frac{d}{dx}\cos x + \log(\cos x)\cdot\frac{dy}{dx} = x\cdot\frac{1}{\sin y}\cdot\frac{d}{dx}\sin y + \log\sin y\cdot1$				
	$\Rightarrow \qquad -y\frac{\sin x}{\cos x} + \log(\cos x) \cdot \frac{dy}{dx} = x\frac{\cos y}{\sin y}\frac{dy}{dx} + \log\sin y$				
	$\Rightarrow -y \tan x + \log(\cos x) \frac{dy}{dx} = x \cot y \frac{dy}{dx} + \log \sin y$				
	$\Rightarrow \qquad \log(\cos x) \cdot \frac{dy}{dx} - x \cot y \frac{dy}{dx} = \log \sin y + y \tan x$				
	$\Rightarrow \qquad \frac{dy}{dx} [\log(\cos x) - x \cot y] = \log \sin y + y \tan x$				
	dx $dy = \log \sin y + y \tan x$				
	$\therefore \qquad \frac{dy}{dx} = \frac{10 \text{ solution}}{\log \cos x - x \cot y}$				
27		1			
21	Area of ABCD = $\int_2^{\infty} x dy$	1			
	$=\int_{0}^{1}2\sqrt{y}dy$				
	$\sum_{j=1}^{n} \frac{1}{\sqrt{2}} = 4y$				
	$=2\int_{2}\sqrt{y}dy$ D				
	$\begin{bmatrix} 3 \end{bmatrix}^4$	1			
	$=2\left \frac{y^2}{2}\right $				
	$\begin{vmatrix} 3\\ 2 \end{vmatrix}$ A B $y=2$				
		1			
	$=\frac{4}{3}\left[(4)^{\frac{1}{2}}-(2)^{\frac{1}{2}}\right]$ X' 0 X				
	$=\frac{7}{3}\left\lfloor 8-2\sqrt{2} \right\rfloor$				
	$(32 - 8\sqrt{2})$				
	$=\left[\frac{32-8\sqrt{2}}{3}\right]$ units				
	the south funt				
	Area of OAB = $\int_0^0 y dx$				
	$=\int_{-1}^{1}3\sqrt{1-\frac{x^{2}}{2}}dx$				
	μ ^γ γ 16 ⁴⁴				
	$=\frac{3}{4}\int_{0}^{4}\sqrt{16-x^{2}}dx$				
	4 Jo 3 B (0, 3)				
	$=\frac{3}{4}\left \frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}\sin^{-1}\frac{x}{4}\right $				
	$4 \begin{bmatrix} 2 & 2 & 4 \end{bmatrix}_0$				
	$=\frac{3}{4}\left[2\sqrt{16-16}+8\sin^{-1}(1)-0-8\sin^{-1}(0)\right]$				
	3[8π]				
	$=\frac{1}{4}\begin{bmatrix}\frac{1}{2}\\2\end{bmatrix}$				
	- 3[4-]				
	$=\frac{1}{4}[+\pi]$				
	$=3\pi$				
	Therefore, area bounded by the ellipse = $4 \times 3\pi = 12\pi$ units				

33	Now, $ A = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{vmatrix} = 1(12 - 5) + 1(9 + 10) + 2(-3 - 8)$ = 7 + 19 - 22 = 4 \neq 0	1
	$\therefore adjA = \begin{bmatrix} 7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{bmatrix}^T = \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$	
	$\Rightarrow A^{-1} = \frac{1}{ A } adj A = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$	2.5
	$\therefore AX = B$ $\Rightarrow X = A^{-1}B$	
	$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$	1.5
	$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$	
	$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$	
	Equating the corresponding elements, we get $x = 2, y = 1, z = 3$	
34	Let $I = \frac{\pi/3}{\pi/6} \frac{dx}{1 + \sqrt{\tan x}} = \frac{\pi/3}{\pi/6} \frac{dx}{1 + \frac{\sqrt{\sin x}}{\sqrt{\cos x}}}$	1
	$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x} dx}{\sqrt{\cos x} + \sqrt{\sin x}}$	1
	$= \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)} dx}{\sqrt{\cos\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)} + \sqrt{\sin\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)}}$	1
	$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x} dx}{\sqrt{\sin x} + \sqrt{\cos x}}$	1
	Adding (i) and (ii), $2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	
	$2I = \int_{\pi/6}^{\pi/3} dx = [x]_{\pi/6}^{\pi/3}$	1
	$\therefore \qquad I = \frac{1}{2} \left[\frac{\pi}{3} - \frac{\pi}{6} \right] = \frac{1}{2} \left[\frac{2\pi - \pi}{6} \right]$	
	$I = \frac{1}{12}$	

$$\begin{array}{c|c} & \text{OR} \\ \text{Let} & l = \int \frac{6x+7}{\sqrt{(x-5)(x-4)}} dx = \int \frac{6x+7}{\sqrt{x^2-9x+20}} dx \\ \text{Now, Let} & 6x+7 = A, \frac{d}{dx}(x^2-9x+20)+B \\ & 6x+7 = A, \frac{d}{dx}(x^2-9x+20)+B \\ & \Rightarrow & 6x+7 = 2Ax-9A+B \\ \text{Comparing the coefficient of x, we get} \\ & 2A = 6 \quad \text{and} \quad -9A+B = 7 \\ & A = 3 \quad \text{and} \quad B = 34 \\ & \ddots \qquad l = \int \frac{3}{\sqrt{x^2-9x+20}} dx \\ & = 3\int \frac{(2x-9)}{\sqrt{x^2-9x+20}} + 34\int \frac{dx}{\sqrt{x^2-9x+20}} \\ & = 3\int \frac{(2x-9)}{\sqrt{x^2-9x+20}} + 34\int \frac{dx}{\sqrt{x^2-9x+20}} \\ & = 3\int \frac{(2x-9)}{\sqrt{x^2-9x+20}} \text{ and} \quad l_2 = \int \frac{dx}{\sqrt{x^2-9x+20}} \\ & = 6\sqrt{x^2-9x+20} + 34\log\left|\left|\left(x-\frac{9}{2}\right) + \sqrt{x^2-9x+20}\right| + C \end{array} \right| \\ & \text{Where} \qquad l_1 = \int \frac{(2x-9)}{\sqrt{x^2-9x+20}} \text{ and} \quad l_2 = \int \frac{dx}{\sqrt{x^2-9x+20}} \\ & = 6\sqrt{x^2-9x+20} + 34\log\left|\left|\left(x-\frac{9}{2}\right) + \sqrt{x^2-9x+20}\right| + C \end{array} \right| \\ & \text{Volume of cylinder inscribed in the sphere of radius R.} \\ & \therefore \quad \text{Using Pythagons theorem} \\ & \frac{4t^2+t^2}{4} = x^2 - \frac{4t^2}{4} \qquad \dots (i) \\ & \text{Volume of cylinder $t = V = \pi r^2 h \\ & \Rightarrow \quad V = \pi \cdot h \left(\frac{4tx^2-h^2}{4}\right) = \pi R^2 h - \frac{\pi}{4}h^3 \\ & = \frac{dt}{dx} = 0 \qquad \Rightarrow \quad \pi R^2 = \frac{3\pi}{4}h^2 \\ & \Rightarrow \quad h = \frac{2}{\sqrt{3}}R \\ & \text{Differentiating (i) again} \\ & \frac{d^2x}{dt} = -\frac{6\pi}{4}h \\ & \frac{d^2x}{dt}(h - \frac{2}{\sqrt{3}}R) = -\frac{3\pi}{2}\left(\frac{4tx^2 - h^2}{4}\right) \\ & \text{Veaux} = \pi \times \frac{2R}{\sqrt{3}}\left(\frac{4tx^2 - h^2}{4}\right) \\ & \text{Veaux} = \pi \times \frac{2R}{\sqrt{3}}\left(\frac{4tx^2 - h^2}{4}\right) \\ & \text{Veaux} = \pi \times \frac{2R}{\sqrt{3}}\left(\frac{4tx^2 - h^2}{4}\right) \\ & \text{CR} \end{array}$$$

Let <i>r</i> be the radius and <i>h</i> be the height of the cylinder of given surface <i>s</i> . Then,	
$s = \pi r^2 + 2\pi h r$	
$h = \frac{s - \pi r^2}{1 + 1} \qquad \dots (i)$	
$2\pi r$	
Then $v = \pi r^2 h = \pi r^2 \left[\frac{s - \pi r^2}{2\pi r} \right]$ [From eqn. (i)]	
$v = \frac{sr - \pi r^3}{2}$	
$\frac{dv}{dr} = \frac{s - 3\pi r^2}{2} \qquad \dots (ii)$	
For maximum or minimum value, we have $\frac{dv}{dr} = 0$	
$\Rightarrow \qquad \frac{s - 3\pi r^2}{2} = 0 \qquad \Rightarrow s = 3\pi r^2$	
$\Rightarrow \pi r^2 + 2\pi r h = 3\pi r^2$	
\Rightarrow $r = h$	
Differentiating equation (<i>ii</i>) w.r.t. <i>r</i> , we get $d^{2}r$	
$\frac{d^2 v}{dr^2} = -3\pi r < 0$	
SECTION E	
36 i) $A = xy = x (P-2x)/2$	1
i) $dA/dx=0: x = P/4$	1
ii) dA/dx greater than 0, x belongs to (0 P/4)	2
dA/dx less than 0 x belongs to (P/4 P/2)	
v = D/A = v	
A = 1/4 = y	
UR Second derivative 2 (less then 0)	
Second derivative = -2 (less than 0)	
So maxima	
Point= x=p/4 =y	
37	1
Now, revenue = sale price \times number of items sole	1
$= \begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.5 \\ 1.5 \\ 1 \end{bmatrix}$	2
[25000+3000+18000] [46000]	
= [15000 + 30000 + 8000] = [53000]	
1), 46000	
2) 53000	
Total cost in each market is given by	
$AC = \begin{bmatrix} 10000 & 2000 & 18000\\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 0.5 \end{bmatrix}$	
$= \begin{bmatrix} 20000 + 2000 + 9000\\ 12000 + 20000 + 4000 \end{bmatrix} = \begin{bmatrix} 31000\\ 36000 \end{bmatrix}$	
Now, Profit matrix = Revenue matrix – Cost matrix	
$= \begin{bmatrix} 46000\\53000 \end{bmatrix} - \begin{bmatrix} 31000\\36000 \end{bmatrix} = \begin{bmatrix} 15000\\17000 \end{bmatrix}$	
3) 15000 OR 17000	
38 1) 6	2
2) 18	2
, - , -	-

MATHS TERM I -2023-24

STD XII

1. This question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.

4. Section C has 6 Short Answer (SA) type questions of 3 marks each.

5. Section D has 4 Long Answer (LA) type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts.

Sl.no	CHAPTER	MCQ1 MARK	CBQ 4 MARK	2 MARKS	3 MARKS	5 MARKS	Total 38(80 marks)
1	Relation and Function	1+1+1		1*		1	5(10 marks)
2	Inverse Trigonometry	1+1+1+1					4(4marks)
3	Matrices	1+1	1	1			4(8marks)
4	Determinants	1			1*	1	3(9 marks)
5	Continuity and Differentiability	1+1+1	1	1*	1*		6(13marks)
6	Application of Derivatives	1+1+1+1	1			1*	6(13 marks)
7	Integrals	1+1		1+1	1	1*	6(14 marks)
8	Application of Integrals				1+1*		2(6 marks)
9	Linear Programming	1			1		2(4marks)

RI	LIE	PR	INT
	.02	1 1 1	

Each student 1 graph