UNIT TEST- I (2023-24)

MATHEMATICS

CLASS: XII
DATE: 22/05/2023

MAX. MARKS: $\mathbf{2 0}$
TIME: 40 MINUTES

General Instructions:

1. This Question paper contains - four sections A, B, C and D. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 4 MCQ's and 1 Assertion-Reason based questions of 1 mark each.
3. Section B has 2 Very Short Answer (VSA)-type questions of 2 mark each.
4. Section C has 2 Short Answer (SA)-type questions of 3 mark each.
5. Section D has 1 Long Answer (LA)-type questions of 5 marks .

SECTION - A

(Multiple Choice Questions) Each question carries 1 mark

1. The function $f(x)=5^{x}+5^{|x|}$ is
(a) One-one and onto
(b) many one and onto
(c) many one and into
(d) One-one and into

OR

If $A=\{a, b, c, d\}$, then relation $R=\{(a, b),(b, a),(a, a)\}$ on A is
(a) Symmetric and transitive only
(b) reflexive and transitive only
(c) symmetric only
(d) transitive only
2. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is
(a) $[1,2]$
(b) $[-1,1]$
(c) $[0,1]$
(d) $(-1,1)$
3. If X and Y are two matrices of order $3 \times p$ and $3 \times q$ respectively and $p=q$, then the order of matrix $(8 X-5 Y)$ is
(a) $\mathrm{p} \times 3$
(b) $3 \times q$
(c) $p \times q$
(d) 3×3
4. If A and B are matrices of same order, then $\left(A B^{\prime}-B A^{\prime}\right)$ is a
(a) identity matrix
(b) null matrix
(c) skew symmetric matrix
(d) symmetric matrix
5. \quad Givene $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]$

Assertion (A): $\mathbf{2 A} A^{-1}=\mathbf{9 I}-A$
Reason (R): $\quad A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
Select the correct answer from the codes (a), (b), (c) and (d) as given below
(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true and but R is not the correct explanation of A
(c) A is true and R is false.
(d) A is false and R is true.

SECTION - B [This section comprises of very short answer type questions (VSA) of 2 marks each]	
6.	Show that the function $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$ for all $x \in R$, is neither injective nor surjective.
7.	Solve: $\sin \left(\cot ^{-1} \frac{1}{x}\right)=\cos \left(\tan ^{-1} \frac{4}{3}\right)$ OR Find the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)-2 \sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
SECTION - C[This section comprises of short answer type questions (SA) of 3 marks each]	
8.	Check whether the relation R on the set R of real numbers, defined as $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}): a \leq b^{2}\right\}$, is reflexive, symmetric or transitive.
9.	If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$, then show that $A^{3}-23 \mathrm{~A}-40 \mathrm{I}=0$ OR If $A=\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right], B=\left[\begin{array}{lll}-1 & 3 & -6\end{array}\right]$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
SECTION - D [This section comprises of long answer type question (LA) of 5 marks]	
10.	IF $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$, find A^{-1}. Using A^{-1}, solve the system of linear equations: $x-2 y=10, \quad 2 x-y-z=8,-2 y+z=7$ OR Using matrices, solve the following system of linear equations: $4 x+3 y+2 z=60, \quad x+2 y+3 z=45, \quad 6 x+2 y+3 z=70$

CLASS: XII
DATE: 22/05/2023

MAX. MARKS: 20
TIME: 40 MINUTES

General Instructions:

1. This Question paper contains - four sections A, B, C and D. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 4 MCQ's and 1 Assertion-Reason based questions of 1 mark each.
3. Section B has 2 Very Short Answer (VSA)-type questions of 2 mark each.
4. Section C has 2 Short Answer (SA)-type questions of 3 mark each.
5. Section D has 1 Long Answer (LA)-type questions of 5 marks .

SECTION - A (Multiple Choice Questions) Each question carries 1 mark	
1.	For real numbers a and b , define $a R b$ if and only if $a-b+\sqrt{7}$ is an irrational number. Then the relation R is (a)Reflexive (b) Symmetric (c) transitive (d) none of these OR If $A=\{1,2,3,4\}$, then relation $R=\{(1,2),(2,1),(1,1)\}$ on A is (a) Symmetric and transitive only (b) reflexive and transitive only (c) symmetric only (d) transitive only
2.	The value of the expression $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is (a) $\frac{\pi}{2}$ (b) $\frac{-\pi}{2}$ (c) 1 (d) 0
3.	If $A=\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$ is such that $\mathrm{A}^{2}=\mathrm{I}$, then (a) $1+x^{2}+y z=0$ (b) $1-x^{2}+y z=0$ (c) $1-x^{2}-y z=0$ (d) $1+x^{2}-y z=0$
4.	If X and Y are matrices of same order, then $\left(X Y^{\prime}-Y X^{\prime}\right)$ is a (a) skew symmetric matrix (b) null matrix (c) symmetric matrix (d) identity matrix
5.	Assertion (A) : If $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then $\|3 A\|=9\|A\|$ Reason (R): If A is a square matrix of order n then $\|k A\|=\boldsymbol{k}^{n}\|A\|$ Select the correct answer from the codes (a), (b), (c) and (d) as given below (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and but R is not the correct explanation of A (c) A is true and R is false. (d) A is false and R is true.

SECTION - B

[This section comprises of very short answer type questions (VSA) of 2 marks each]
6. \quad Show that the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$ is one-one but not on to.
7. Solve: $\sin \left(\cot ^{-1} x\right)=\cos \left(\tan ^{-1} \frac{4}{3}\right)$

OR
Express $\cos ^{-1}\left(\frac{\cos x-\sin x}{\sqrt{2}}\right), \frac{-\pi}{4}<x<\frac{\pi}{4}$, in the simplest form.

SECTION - C
[This section comprises of short answer type questions (SA) of 3 marks each]
8.

Check whether the relation R on the set R of real numbers, defined as $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}): a \leq b^{3}\right\}$, is reflexive, symmetric or transitive.
9.

If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$, then find X such that $A^{2}-5 A+4 I+X=O$ OR
If $A=\left[\begin{array}{c}2 \\ -4 \\ 6\end{array}\right], B=\left[\begin{array}{lll}1 & -3 & 5\end{array}\right]$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$.

SECTION - D

[This section comprises of long answer type question (LA) of 5 marks]
10.

Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations:
$x-y+2 z=1, \quad 2 y-3 z=1, \quad 3 x-2 y+4 z=2$
OR
Using matrices, solve the following system of linear equations:
$4 x+3 y+2 z=60, \quad x+2 y+3 z=45, \quad 6 x+2 y+3 z=70$

